Spaces:
Runtime error
Runtime error
Commit
·
b558f4f
1
Parent(s):
19c43aa
function calling example
Browse files- function_calling_search.ipynb +230 -0
function_calling_search.ipynb
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": 1,
|
20 |
+
"metadata": {
|
21 |
+
"id": "-DBXBd1Q6SFF"
|
22 |
+
},
|
23 |
+
"outputs": [],
|
24 |
+
"source": [
|
25 |
+
"import requests\n",
|
26 |
+
"from typing import List, Dict, Any, Iterator\n",
|
27 |
+
"\n",
|
28 |
+
"class DatasetSearchClient:\n",
|
29 |
+
" def __init__(self, base_url: str = \"https://librarian-bots-dataset-column-search-api.hf.space\"):\n",
|
30 |
+
" self.base_url = base_url\n",
|
31 |
+
"\n",
|
32 |
+
" def search(self,\n",
|
33 |
+
" columns: List[str],\n",
|
34 |
+
" match_all: bool = False,\n",
|
35 |
+
" page_size: int = 100) -> Iterator[Dict[str, Any]]:\n",
|
36 |
+
" \"\"\"\n",
|
37 |
+
" Search datasets using the provided API, automatically handling pagination.\n",
|
38 |
+
"\n",
|
39 |
+
" Args:\n",
|
40 |
+
" columns (List[str]): List of column names to search for.\n",
|
41 |
+
" match_all (bool, optional): If True, match all columns. If False, match any column. Defaults to False.\n",
|
42 |
+
" page_size (int, optional): Number of results per page. Defaults to 100.\n",
|
43 |
+
"\n",
|
44 |
+
" Yields:\n",
|
45 |
+
" Dict[str, Any]: Each dataset result from all pages.\n",
|
46 |
+
"\n",
|
47 |
+
" Raises:\n",
|
48 |
+
" requests.RequestException: If there's an error with the HTTP request.\n",
|
49 |
+
" ValueError: If the API returns an unexpected response format.\n",
|
50 |
+
" \"\"\"\n",
|
51 |
+
" page = 1\n",
|
52 |
+
" total_results = None\n",
|
53 |
+
"\n",
|
54 |
+
" while total_results is None or (page - 1) * page_size < total_results:\n",
|
55 |
+
" params = {\n",
|
56 |
+
" \"columns\": columns,\n",
|
57 |
+
" \"match_all\": str(match_all).lower(),\n",
|
58 |
+
" \"page\": page,\n",
|
59 |
+
" \"page_size\": page_size\n",
|
60 |
+
" }\n",
|
61 |
+
"\n",
|
62 |
+
" try:\n",
|
63 |
+
" response = requests.get(f\"{self.base_url}/search\", params=params)\n",
|
64 |
+
" response.raise_for_status()\n",
|
65 |
+
" data = response.json()\n",
|
66 |
+
"\n",
|
67 |
+
" if not {\"total\", \"page\", \"page_size\", \"results\"}.issubset(data.keys()):\n",
|
68 |
+
" raise ValueError(\"Unexpected response format from the API\")\n",
|
69 |
+
"\n",
|
70 |
+
" if total_results is None:\n",
|
71 |
+
" total_results = data['total']\n",
|
72 |
+
"\n",
|
73 |
+
" for dataset in data['results']:\n",
|
74 |
+
" yield dataset\n",
|
75 |
+
"\n",
|
76 |
+
" page += 1\n",
|
77 |
+
"\n",
|
78 |
+
" except requests.RequestException as e:\n",
|
79 |
+
" raise requests.RequestException(f\"Error connecting to the API: {str(e)}\")\n",
|
80 |
+
" except ValueError as e:\n",
|
81 |
+
" raise ValueError(f\"Error processing API response: {str(e)}\")\n",
|
82 |
+
"\n",
|
83 |
+
"# Create an instance of the client\n",
|
84 |
+
"client = DatasetSearchClient()"
|
85 |
+
]
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"cell_type": "code",
|
89 |
+
"source": [
|
90 |
+
"results = list(client.search(['tools'],match_all=True))\n",
|
91 |
+
"len(results)"
|
92 |
+
],
|
93 |
+
"metadata": {
|
94 |
+
"colab": {
|
95 |
+
"base_uri": "https://localhost:8080/"
|
96 |
+
},
|
97 |
+
"id": "9yupgFYx6Sqx",
|
98 |
+
"outputId": "ac6d7c15-2267-4bbd-ceaa-1d98faee188b"
|
99 |
+
},
|
100 |
+
"execution_count": 5,
|
101 |
+
"outputs": [
|
102 |
+
{
|
103 |
+
"output_type": "execute_result",
|
104 |
+
"data": {
|
105 |
+
"text/plain": [
|
106 |
+
"38"
|
107 |
+
]
|
108 |
+
},
|
109 |
+
"metadata": {},
|
110 |
+
"execution_count": 5
|
111 |
+
}
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"source": [
|
117 |
+
"results[0]"
|
118 |
+
],
|
119 |
+
"metadata": {
|
120 |
+
"colab": {
|
121 |
+
"base_uri": "https://localhost:8080/"
|
122 |
+
},
|
123 |
+
"id": "atL-PQq76VrV",
|
124 |
+
"outputId": "f357fe16-a1f9-4bb2-ca3d-767f3ac6508d"
|
125 |
+
},
|
126 |
+
"execution_count": 6,
|
127 |
+
"outputs": [
|
128 |
+
{
|
129 |
+
"output_type": "execute_result",
|
130 |
+
"data": {
|
131 |
+
"text/plain": [
|
132 |
+
"{'hub_id': 'llamafactory/glaive_toolcall_en',\n",
|
133 |
+
" 'likes': 1,\n",
|
134 |
+
" 'downloads': 1151,\n",
|
135 |
+
" 'tags': ['task_categories:text-generation',\n",
|
136 |
+
" 'task_categories:question-answering',\n",
|
137 |
+
" 'language:en',\n",
|
138 |
+
" 'license:apache-2.0',\n",
|
139 |
+
" 'size_categories:1K<n<10K',\n",
|
140 |
+
" 'json',\n",
|
141 |
+
" 'text',\n",
|
142 |
+
" 'datasets',\n",
|
143 |
+
" 'mlcroissant',\n",
|
144 |
+
" 'region:us',\n",
|
145 |
+
" 'llama-factory',\n",
|
146 |
+
" 'croissant'],\n",
|
147 |
+
" 'created_at': 1715955540,\n",
|
148 |
+
" 'last_modified': 1717785919,\n",
|
149 |
+
" 'license': ['apache-2.0'],\n",
|
150 |
+
" 'language': ['en'],\n",
|
151 |
+
" 'config_name': 'default',\n",
|
152 |
+
" 'column_names': ['conversations', 'tools'],\n",
|
153 |
+
" 'features': [{'name': 'conversations',\n",
|
154 |
+
" 'list': [{'name': 'from', 'dtype': 'string'},\n",
|
155 |
+
" {'name': 'value', 'dtype': 'string'}]},\n",
|
156 |
+
" {'name': 'tools', 'dtype': 'string'}],\n",
|
157 |
+
" 'match_count': 1}"
|
158 |
+
]
|
159 |
+
},
|
160 |
+
"metadata": {},
|
161 |
+
"execution_count": 6
|
162 |
+
}
|
163 |
+
]
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"cell_type": "code",
|
167 |
+
"source": [
|
168 |
+
"from huggingface_hub import create_collection, add_collection_item"
|
169 |
+
],
|
170 |
+
"metadata": {
|
171 |
+
"id": "pXKtgF3r7GSK"
|
172 |
+
},
|
173 |
+
"execution_count": 9,
|
174 |
+
"outputs": []
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"cell_type": "code",
|
178 |
+
"source": [
|
179 |
+
"collection = create_collection(\"Probably function calling datasets\", namespace=\"librarian-bots\",)"
|
180 |
+
],
|
181 |
+
"metadata": {
|
182 |
+
"id": "MzkGofqF7M0i"
|
183 |
+
},
|
184 |
+
"execution_count": 11,
|
185 |
+
"outputs": []
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"cell_type": "code",
|
189 |
+
"source": [
|
190 |
+
"collection.slug"
|
191 |
+
],
|
192 |
+
"metadata": {
|
193 |
+
"colab": {
|
194 |
+
"base_uri": "https://localhost:8080/",
|
195 |
+
"height": 36
|
196 |
+
},
|
197 |
+
"id": "rAGoahvb7Ucp",
|
198 |
+
"outputId": "c5f7b158-85cb-49be-903f-7caaa98f7b74"
|
199 |
+
},
|
200 |
+
"execution_count": 12,
|
201 |
+
"outputs": [
|
202 |
+
{
|
203 |
+
"output_type": "execute_result",
|
204 |
+
"data": {
|
205 |
+
"text/plain": [
|
206 |
+
"'librarian-bots/probably-function-calling-datasets-6683d24da13a7bb7efee7464'"
|
207 |
+
],
|
208 |
+
"application/vnd.google.colaboratory.intrinsic+json": {
|
209 |
+
"type": "string"
|
210 |
+
}
|
211 |
+
},
|
212 |
+
"metadata": {},
|
213 |
+
"execution_count": 12
|
214 |
+
}
|
215 |
+
]
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"cell_type": "code",
|
219 |
+
"source": [
|
220 |
+
"for item in results:\n",
|
221 |
+
" add_collection_item(collection.slug, item['hub_id'], item_type=\"dataset\")"
|
222 |
+
],
|
223 |
+
"metadata": {
|
224 |
+
"id": "LR6nJyCL7ZZK"
|
225 |
+
},
|
226 |
+
"execution_count": 13,
|
227 |
+
"outputs": []
|
228 |
+
}
|
229 |
+
]
|
230 |
+
}
|