Spaces:
Runtime error
Runtime error
Commit
•
19c43aa
1
Parent(s):
6709ec5
feat: Add Hugging Face Hub integration for uploading database file
Browse files
dataset_search_client_notebook.ipynb
ADDED
@@ -0,0 +1,520 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "Kq8_kBUjxY3B"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"# Dataset Search Client Documentation\n",
|
10 |
+
"\n",
|
11 |
+
"This notebook demonstrates how to use the [librarian-bots/dataset-column-search-api](https://huggingface.co/spaces/librarian-bots/dataset-column-search-api) API to search for Hugging Face datasets by their column names."
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "markdown",
|
16 |
+
"metadata": {
|
17 |
+
"id": "ArdwzeQSxY3D"
|
18 |
+
},
|
19 |
+
"source": [
|
20 |
+
"## Introduction\n",
|
21 |
+
"\n",
|
22 |
+
"The Hugging Face Hub hosts a vast collection of datasets for various machine learning tasks. These datasets often have different structures and column names. The [librarian-bots/dataset-column-search-api](https://huggingface.co/spaces/librarian-bots/dataset-column-search-api) API allows you to find datasets that match specific column structures, which can be incredibly useful for tasks like:\n",
|
23 |
+
"\n",
|
24 |
+
"1. Finding datasets suitable for specific machine learning tasks\n",
|
25 |
+
"2. Identifying datasets with compatible structures for transfer learning or data augmentation\n",
|
26 |
+
"3. Exploring the availability of datasets with certain features or labels\n",
|
27 |
+
"\n",
|
28 |
+
"By searching based on column names, you can quickly identify datasets that fit your specific needs without having to manually inspect each dataset's structure."
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "markdown",
|
33 |
+
"metadata": {
|
34 |
+
"id": "5KeXd86UxY3D"
|
35 |
+
},
|
36 |
+
"source": [
|
37 |
+
"## Setup\n",
|
38 |
+
"\n",
|
39 |
+
"First, let's import the necessary libraries and define a `DatasetSearchClient` class which we'll use to call the API (feel free to directly call the API if prefered)."
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "code",
|
44 |
+
"execution_count": 94,
|
45 |
+
"metadata": {
|
46 |
+
"id": "EyvEz03KxY3D"
|
47 |
+
},
|
48 |
+
"outputs": [],
|
49 |
+
"source": [
|
50 |
+
"import requests\n",
|
51 |
+
"from typing import List, Dict, Any, Iterator\n",
|
52 |
+
"\n",
|
53 |
+
"class DatasetSearchClient:\n",
|
54 |
+
" def __init__(self, base_url: str = \"https://librarian-bots-dataset-column-search-api.hf.space\"):\n",
|
55 |
+
" self.base_url = base_url\n",
|
56 |
+
"\n",
|
57 |
+
" def search(self,\n",
|
58 |
+
" columns: List[str],\n",
|
59 |
+
" match_all: bool = False,\n",
|
60 |
+
" page_size: int = 100) -> Iterator[Dict[str, Any]]:\n",
|
61 |
+
" \"\"\"\n",
|
62 |
+
" Search datasets using the provided API, automatically handling pagination.\n",
|
63 |
+
"\n",
|
64 |
+
" Args:\n",
|
65 |
+
" columns (List[str]): List of column names to search for.\n",
|
66 |
+
" match_all (bool, optional): If True, match all columns. If False, match any column. Defaults to False.\n",
|
67 |
+
" page_size (int, optional): Number of results per page. Defaults to 100.\n",
|
68 |
+
"\n",
|
69 |
+
" Yields:\n",
|
70 |
+
" Dict[str, Any]: Each dataset result from all pages.\n",
|
71 |
+
"\n",
|
72 |
+
" Raises:\n",
|
73 |
+
" requests.RequestException: If there's an error with the HTTP request.\n",
|
74 |
+
" ValueError: If the API returns an unexpected response format.\n",
|
75 |
+
" \"\"\"\n",
|
76 |
+
" page = 1\n",
|
77 |
+
" total_results = None\n",
|
78 |
+
"\n",
|
79 |
+
" while total_results is None or (page - 1) * page_size < total_results:\n",
|
80 |
+
" params = {\n",
|
81 |
+
" \"columns\": columns,\n",
|
82 |
+
" \"match_all\": str(match_all).lower(),\n",
|
83 |
+
" \"page\": page,\n",
|
84 |
+
" \"page_size\": page_size\n",
|
85 |
+
" }\n",
|
86 |
+
"\n",
|
87 |
+
" try:\n",
|
88 |
+
" response = requests.get(f\"{self.base_url}/search\", params=params)\n",
|
89 |
+
" response.raise_for_status()\n",
|
90 |
+
" data = response.json()\n",
|
91 |
+
"\n",
|
92 |
+
" if not {\"total\", \"page\", \"page_size\", \"results\"}.issubset(data.keys()):\n",
|
93 |
+
" raise ValueError(\"Unexpected response format from the API\")\n",
|
94 |
+
"\n",
|
95 |
+
" if total_results is None:\n",
|
96 |
+
" total_results = data['total']\n",
|
97 |
+
"\n",
|
98 |
+
" for dataset in data['results']:\n",
|
99 |
+
" yield dataset\n",
|
100 |
+
"\n",
|
101 |
+
" page += 1\n",
|
102 |
+
"\n",
|
103 |
+
" except requests.RequestException as e:\n",
|
104 |
+
" raise requests.RequestException(f\"Error connecting to the API: {str(e)}\")\n",
|
105 |
+
" except ValueError as e:\n",
|
106 |
+
" raise ValueError(f\"Error processing API response: {str(e)}\")\n",
|
107 |
+
"\n",
|
108 |
+
"# Create an instance of the client\n",
|
109 |
+
"client = DatasetSearchClient()"
|
110 |
+
]
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"cell_type": "markdown",
|
114 |
+
"metadata": {
|
115 |
+
"id": "mxVqxdCtxY3E"
|
116 |
+
},
|
117 |
+
"source": [
|
118 |
+
"## Example 1: Searching for Text Classification Datasets\n",
|
119 |
+
"\n",
|
120 |
+
"Let's start by searching for datasets that have both \"text\" and \"label\" columns, which are common in text classification tasks:"
|
121 |
+
]
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"cell_type": "code",
|
125 |
+
"execution_count": 95,
|
126 |
+
"metadata": {
|
127 |
+
"colab": {
|
128 |
+
"base_uri": "https://localhost:8080/"
|
129 |
+
},
|
130 |
+
"id": "T2wyABxrxY3E",
|
131 |
+
"outputId": "9541e61e-1e0d-4d8a-a5d7-1e2db117bf3c"
|
132 |
+
},
|
133 |
+
"outputs": [
|
134 |
+
{
|
135 |
+
"output_type": "stream",
|
136 |
+
"name": "stdout",
|
137 |
+
"text": [
|
138 |
+
"Datasets suitable for text classification (with 'text' and 'label' columns):\n",
|
139 |
+
"1. mteb/amazon_counterfactual: ['text', 'label', 'label_text']\n",
|
140 |
+
"2. dair-ai/emotion: ['text', 'label']\n",
|
141 |
+
"3. stanfordnlp/imdb: ['text', 'label']\n",
|
142 |
+
"4. 203427as321/articles: ['label', 'text', '__index_level_0__']\n",
|
143 |
+
"5. indonlp/NusaX-senti: ['id', 'text', 'lang', 'label']\n",
|
144 |
+
"\n",
|
145 |
+
"Total datasets found: 1866\n"
|
146 |
+
]
|
147 |
+
}
|
148 |
+
],
|
149 |
+
"source": [
|
150 |
+
"text_classification_columns = [\"text\", \"label\"]\n",
|
151 |
+
"results = client.search(text_classification_columns, match_all=True)\n",
|
152 |
+
"\n",
|
153 |
+
"print(\"Datasets suitable for text classification (with 'text' and 'label' columns):\")\n",
|
154 |
+
"for i, dataset in enumerate(results, 1):\n",
|
155 |
+
" print(f\"{i}. {dataset['hub_id']}: {dataset['column_names']}\")\n",
|
156 |
+
" if i >= 5: # Print only the first 5 as a sample\n",
|
157 |
+
" break\n",
|
158 |
+
"\n",
|
159 |
+
"total_results = len(list(client.search(text_classification_columns, match_all=True)))\n",
|
160 |
+
"print(f\"\\nTotal datasets found: {total_results}\")"
|
161 |
+
]
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"cell_type": "markdown",
|
165 |
+
"metadata": {
|
166 |
+
"id": "al0oo4yBxY3E"
|
167 |
+
},
|
168 |
+
"source": [
|
169 |
+
"## Example 2: Searching for Question-Answering Datasets\n",
|
170 |
+
"\n",
|
171 |
+
"Now, let's search for datasets that could be used for question-answering tasks:"
|
172 |
+
]
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"cell_type": "code",
|
176 |
+
"execution_count": 97,
|
177 |
+
"metadata": {
|
178 |
+
"colab": {
|
179 |
+
"base_uri": "https://localhost:8080/"
|
180 |
+
},
|
181 |
+
"id": "WY9e3o0CxY3E",
|
182 |
+
"outputId": "f46cb86a-9df9-405a-bca9-17cac3fe5faa"
|
183 |
+
},
|
184 |
+
"outputs": [
|
185 |
+
{
|
186 |
+
"output_type": "stream",
|
187 |
+
"name": "stdout",
|
188 |
+
"text": [
|
189 |
+
"Datasets suitable for question-answering tasks (with 'question', 'answer', and 'context' columns):\n",
|
190 |
+
"1. hotpotqa/hotpot_qa: ['id', 'question', 'answer', 'type', 'level', 'supporting_facts', 'context']\n",
|
191 |
+
"2. neural-bridge/rag-dataset-12000: ['context', 'question', 'answer']\n",
|
192 |
+
"3. ryo0634/xquad-sampled: ['id', 'question', 'context', 'answer_sentence', 'answer']\n",
|
193 |
+
"4. lcw99/wikipedia-korean-20240501-1million-qna: ['question', 'answer', 'context']\n",
|
194 |
+
"5. virattt/financial-qa-10K: ['question', 'answer', 'context', 'ticker', 'filing']\n",
|
195 |
+
"\n",
|
196 |
+
"Total datasets found: 646\n"
|
197 |
+
]
|
198 |
+
}
|
199 |
+
],
|
200 |
+
"source": [
|
201 |
+
"qa_columns = [\"question\", \"answer\", \"context\"]\n",
|
202 |
+
"results = client.search(qa_columns, match_all=True)\n",
|
203 |
+
"\n",
|
204 |
+
"print(\"Datasets suitable for question-answering tasks (with 'question', 'answer', and 'context' columns):\")\n",
|
205 |
+
"for i, dataset in enumerate(results, 1):\n",
|
206 |
+
" print(f\"{i}. {dataset['hub_id']}: {dataset['column_names']}\")\n",
|
207 |
+
" if i >= 5: # Print only the first 5 as a sample\n",
|
208 |
+
" break\n",
|
209 |
+
"\n",
|
210 |
+
"total_results = len(list(client.search(qa_columns, match_all=True)))\n",
|
211 |
+
"print(f\"\\nTotal datasets found: {total_results}\")"
|
212 |
+
]
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"cell_type": "markdown",
|
216 |
+
"metadata": {
|
217 |
+
"id": "kiU3-f-OxY3E"
|
218 |
+
},
|
219 |
+
"source": [
|
220 |
+
"## Example 3: Searching for Instruction-Following Datasets\n",
|
221 |
+
"\n",
|
222 |
+
"Let's search for datasets that could be used for instruction-following tasks, which are common in training large language models:"
|
223 |
+
]
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"cell_type": "code",
|
227 |
+
"execution_count": 98,
|
228 |
+
"metadata": {
|
229 |
+
"colab": {
|
230 |
+
"base_uri": "https://localhost:8080/"
|
231 |
+
},
|
232 |
+
"id": "nt8SSWaRxY3F",
|
233 |
+
"outputId": "42460b4b-6dac-48f1-a3b2-b1504bd16686"
|
234 |
+
},
|
235 |
+
"outputs": [
|
236 |
+
{
|
237 |
+
"output_type": "stream",
|
238 |
+
"name": "stdout",
|
239 |
+
"text": [
|
240 |
+
"Datasets suitable for instruction-following tasks (with 'instruction', 'input', and 'output' columns):\n",
|
241 |
+
"1. garage-bAInd/Open-Platypus: ['input', 'output', 'instruction', 'data_source']\n",
|
242 |
+
"2. HuggingFaceH4/databricks_dolly_15k: ['category', 'instruction', 'input', 'output']\n",
|
243 |
+
"3. chargoddard/alpaca-gpt4-500: ['instruction', 'input', 'output', 'text', '__index_level_0__']\n",
|
244 |
+
"4. vicgalle/alpaca-gpt4: ['instruction', 'input', 'output', 'text']\n",
|
245 |
+
"5. llamafactory/alpaca_en: ['instruction', 'input', 'output']\n",
|
246 |
+
"\n",
|
247 |
+
"Total datasets found: 1937\n"
|
248 |
+
]
|
249 |
+
}
|
250 |
+
],
|
251 |
+
"source": [
|
252 |
+
"instruction_columns = [\"instruction\", \"input\", \"output\"]\n",
|
253 |
+
"results = client.search(instruction_columns, match_all=True)\n",
|
254 |
+
"\n",
|
255 |
+
"print(\"Datasets suitable for instruction-following tasks (with 'instruction', 'input', and 'output' columns):\")\n",
|
256 |
+
"for i, dataset in enumerate(results, 1):\n",
|
257 |
+
" print(f\"{i}. {dataset['hub_id']}: {dataset['column_names']}\")\n",
|
258 |
+
" if i >= 5: # Print only the first 5 as a sample\n",
|
259 |
+
" break\n",
|
260 |
+
"\n",
|
261 |
+
"total_results = len(list(client.search(instruction_columns, match_all=True)))\n",
|
262 |
+
"print(f\"\\nTotal datasets found: {total_results}\")"
|
263 |
+
]
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"cell_type": "markdown",
|
267 |
+
"source": [
|
268 |
+
"# Creating collections for common dataset formats\n",
|
269 |
+
"\n",
|
270 |
+
"We can also use the API to create a Hugging Face Collection based on our search. Let's use an alpaca formatted dataset as an example:\n",
|
271 |
+
"\n",
|
272 |
+
"alpaca\n",
|
273 |
+
"```\n",
|
274 |
+
"{\"instruction\": \"...\", \"input\": \"...\", \"output\": \"...\"}\n",
|
275 |
+
"```\n"
|
276 |
+
],
|
277 |
+
"metadata": {
|
278 |
+
"id": "yRdaLtZ0AQlj"
|
279 |
+
}
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"cell_type": "code",
|
283 |
+
"source": [
|
284 |
+
"alpaca = ['instruction', 'input', 'output']"
|
285 |
+
],
|
286 |
+
"metadata": {
|
287 |
+
"id": "kdB0wnEDDek8"
|
288 |
+
},
|
289 |
+
"execution_count": 99,
|
290 |
+
"outputs": []
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"cell_type": "code",
|
294 |
+
"source": [
|
295 |
+
"results = list(client.search(alpaca, match_all=True))\n",
|
296 |
+
"len(results)"
|
297 |
+
],
|
298 |
+
"metadata": {
|
299 |
+
"colab": {
|
300 |
+
"base_uri": "https://localhost:8080/"
|
301 |
+
},
|
302 |
+
"id": "uh52VwKTQasR",
|
303 |
+
"outputId": "c16e50ce-6799-42b9-9ae4-e9016d767c6f"
|
304 |
+
},
|
305 |
+
"execution_count": 100,
|
306 |
+
"outputs": [
|
307 |
+
{
|
308 |
+
"output_type": "execute_result",
|
309 |
+
"data": {
|
310 |
+
"text/plain": [
|
311 |
+
"1937"
|
312 |
+
]
|
313 |
+
},
|
314 |
+
"metadata": {},
|
315 |
+
"execution_count": 100
|
316 |
+
}
|
317 |
+
]
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"cell_type": "markdown",
|
321 |
+
"source": [
|
322 |
+
"We now import some functions from `huggingface_hub` to create a collection."
|
323 |
+
],
|
324 |
+
"metadata": {
|
325 |
+
"id": "BZ6LNKg3FdYs"
|
326 |
+
}
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"cell_type": "code",
|
330 |
+
"source": [
|
331 |
+
"from huggingface_hub import login, create_collection, add_collection_item"
|
332 |
+
],
|
333 |
+
"metadata": {
|
334 |
+
"id": "eckH26s8w_U4"
|
335 |
+
},
|
336 |
+
"execution_count": 25,
|
337 |
+
"outputs": []
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"cell_type": "markdown",
|
341 |
+
"source": [
|
342 |
+
"I have my HF_TOKEN stored as a Secret in Colab. You can also login by calling `login()` directly."
|
343 |
+
],
|
344 |
+
"metadata": {
|
345 |
+
"id": "nUIshM8bFhW3"
|
346 |
+
}
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"cell_type": "code",
|
350 |
+
"source": [
|
351 |
+
"from google.colab import userdata"
|
352 |
+
],
|
353 |
+
"metadata": {
|
354 |
+
"id": "3ywhU4J7xGuE"
|
355 |
+
},
|
356 |
+
"execution_count": 102,
|
357 |
+
"outputs": []
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"cell_type": "code",
|
361 |
+
"source": [
|
362 |
+
"login(userdata.get('HF_TOKEN'))"
|
363 |
+
],
|
364 |
+
"metadata": {
|
365 |
+
"colab": {
|
366 |
+
"base_uri": "https://localhost:8080/"
|
367 |
+
},
|
368 |
+
"id": "b0yRHNw0xCq7",
|
369 |
+
"outputId": "1bcdbda5-34d9-4848-f315-2fc81772df38"
|
370 |
+
},
|
371 |
+
"execution_count": 103,
|
372 |
+
"outputs": [
|
373 |
+
{
|
374 |
+
"output_type": "stream",
|
375 |
+
"name": "stdout",
|
376 |
+
"text": [
|
377 |
+
"The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.\n",
|
378 |
+
"Token is valid (permission: write).\n",
|
379 |
+
"Your token has been saved to /root/.cache/huggingface/token\n",
|
380 |
+
"Login successful\n"
|
381 |
+
]
|
382 |
+
}
|
383 |
+
]
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"cell_type": "markdown",
|
387 |
+
"source": [
|
388 |
+
"We create a collection using `create_collection`. WE"
|
389 |
+
],
|
390 |
+
"metadata": {
|
391 |
+
"id": "krcmAIyNFshv"
|
392 |
+
}
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"cell_type": "code",
|
396 |
+
"source": [
|
397 |
+
"collection = create_collection(\"Probably Alpaca Style Datasets\", exists_ok=True)"
|
398 |
+
],
|
399 |
+
"metadata": {
|
400 |
+
"id": "fGpAnGOPxEWp"
|
401 |
+
},
|
402 |
+
"execution_count": 108,
|
403 |
+
"outputs": []
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"cell_type": "code",
|
407 |
+
"source": [
|
408 |
+
"collection.title"
|
409 |
+
],
|
410 |
+
"metadata": {
|
411 |
+
"colab": {
|
412 |
+
"base_uri": "https://localhost:8080/",
|
413 |
+
"height": 36
|
414 |
+
},
|
415 |
+
"id": "Gt8rql39RC5R",
|
416 |
+
"outputId": "4af9a2f0-6c20-43a9-f46f-1dc38c2cb480"
|
417 |
+
},
|
418 |
+
"execution_count": 109,
|
419 |
+
"outputs": [
|
420 |
+
{
|
421 |
+
"output_type": "execute_result",
|
422 |
+
"data": {
|
423 |
+
"text/plain": [
|
424 |
+
"'Probably Alpaca Style Datasets'"
|
425 |
+
],
|
426 |
+
"application/vnd.google.colaboratory.intrinsic+json": {
|
427 |
+
"type": "string"
|
428 |
+
}
|
429 |
+
},
|
430 |
+
"metadata": {},
|
431 |
+
"execution_count": 109
|
432 |
+
}
|
433 |
+
]
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"cell_type": "code",
|
437 |
+
"source": [
|
438 |
+
"collection.slug"
|
439 |
+
],
|
440 |
+
"metadata": {
|
441 |
+
"colab": {
|
442 |
+
"base_uri": "https://localhost:8080/",
|
443 |
+
"height": 36
|
444 |
+
},
|
445 |
+
"id": "0OC5U8VeF_Zq",
|
446 |
+
"outputId": "bf135fe4-cf65-4425-c541-eb285aaa86e6"
|
447 |
+
},
|
448 |
+
"execution_count": 110,
|
449 |
+
"outputs": [
|
450 |
+
{
|
451 |
+
"output_type": "execute_result",
|
452 |
+
"data": {
|
453 |
+
"text/plain": [
|
454 |
+
"'davanstrien/probably-alpaca-style-datasets-667eead1bad3a964ea580e04'"
|
455 |
+
],
|
456 |
+
"application/vnd.google.colaboratory.intrinsic+json": {
|
457 |
+
"type": "string"
|
458 |
+
}
|
459 |
+
},
|
460 |
+
"metadata": {},
|
461 |
+
"execution_count": 110
|
462 |
+
}
|
463 |
+
]
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"cell_type": "markdown",
|
467 |
+
"source": [
|
468 |
+
"We now loop through our results and add them to the Collection."
|
469 |
+
],
|
470 |
+
"metadata": {
|
471 |
+
"id": "-GEpHrekGAx6"
|
472 |
+
}
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"cell_type": "code",
|
476 |
+
"source": [
|
477 |
+
"for result in results:\n",
|
478 |
+
" add_collection_item(collection.slug, result['hub_id'], item_type=\"dataset\", exists_ok=True)"
|
479 |
+
],
|
480 |
+
"metadata": {
|
481 |
+
"id": "Vb3hgnRBxW4T"
|
482 |
+
},
|
483 |
+
"execution_count": null,
|
484 |
+
"outputs": []
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"cell_type": "markdown",
|
488 |
+
"source": [
|
489 |
+
"Since the results have some key metadata about the dataset you can also filter the results further before creating a Collection."
|
490 |
+
],
|
491 |
+
"metadata": {
|
492 |
+
"id": "vOdodAVcGI96"
|
493 |
+
}
|
494 |
+
}
|
495 |
+
],
|
496 |
+
"metadata": {
|
497 |
+
"kernelspec": {
|
498 |
+
"display_name": "Python 3",
|
499 |
+
"language": "python",
|
500 |
+
"name": "python3"
|
501 |
+
},
|
502 |
+
"language_info": {
|
503 |
+
"codemirror_mode": {
|
504 |
+
"name": "ipython",
|
505 |
+
"version": 3
|
506 |
+
},
|
507 |
+
"file_extension": ".py",
|
508 |
+
"mimetype": "text/x-python",
|
509 |
+
"name": "python",
|
510 |
+
"nbconvert_exporter": "python",
|
511 |
+
"pygments_lexer": "ipython3",
|
512 |
+
"version": "3.8.5"
|
513 |
+
},
|
514 |
+
"colab": {
|
515 |
+
"provenance": []
|
516 |
+
}
|
517 |
+
},
|
518 |
+
"nbformat": 4,
|
519 |
+
"nbformat_minor": 0
|
520 |
+
}
|