Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import torch | |
from modules.speaker import Speaker | |
from modules.utils.SeedContext import SeedContext | |
from modules import models, config | |
import logging | |
import gc | |
from modules.devices import devices | |
from typing import Union | |
from modules.utils.cache import conditional_cache | |
logger = logging.getLogger(__name__) | |
def generate_audio( | |
text: str, | |
temperature: float = 0.3, | |
top_P: float = 0.7, | |
top_K: float = 20, | |
spk: Union[int, Speaker] = -1, | |
infer_seed: int = -1, | |
use_decoder: bool = True, | |
prompt1: str = "", | |
prompt2: str = "", | |
prefix: str = "", | |
): | |
(sample_rate, wav) = generate_audio_batch( | |
[text], | |
temperature=temperature, | |
top_P=top_P, | |
top_K=top_K, | |
spk=spk, | |
infer_seed=infer_seed, | |
use_decoder=use_decoder, | |
prompt1=prompt1, | |
prompt2=prompt2, | |
prefix=prefix, | |
)[0] | |
return (sample_rate, wav) | |
def generate_audio_batch( | |
texts: list[str], | |
temperature: float = 0.3, | |
top_P: float = 0.7, | |
top_K: float = 20, | |
spk: Union[int, Speaker] = -1, | |
infer_seed: int = -1, | |
use_decoder: bool = True, | |
prompt1: str = "", | |
prompt2: str = "", | |
prefix: str = "", | |
): | |
chat_tts = models.load_chat_tts() | |
params_infer_code = { | |
"spk_emb": None, | |
"temperature": temperature, | |
"top_P": top_P, | |
"top_K": top_K, | |
"prompt1": prompt1 or "", | |
"prompt2": prompt2 or "", | |
"prefix": prefix or "", | |
"repetition_penalty": 1.0, | |
"disable_tqdm": config.runtime_env_vars.off_tqdm, | |
} | |
if isinstance(spk, int): | |
with SeedContext(spk, True): | |
params_infer_code["spk_emb"] = chat_tts.sample_random_speaker() | |
logger.debug(("spk", spk)) | |
elif isinstance(spk, Speaker): | |
if not isinstance(spk.emb, torch.Tensor): | |
raise ValueError("spk.pt is broken, please retrain the model.") | |
params_infer_code["spk_emb"] = spk.emb | |
logger.debug(("spk", spk.name)) | |
else: | |
logger.warn( | |
f"spk must be int or Speaker, but: <{type(spk)}> {spk}, wiil set to default voice" | |
) | |
with SeedContext(2, True): | |
params_infer_code["spk_emb"] = chat_tts.sample_random_speaker() | |
logger.debug( | |
{ | |
"text": texts, | |
"infer_seed": infer_seed, | |
"temperature": temperature, | |
"top_P": top_P, | |
"top_K": top_K, | |
"prompt1": prompt1 or "", | |
"prompt2": prompt2 or "", | |
"prefix": prefix or "", | |
} | |
) | |
with SeedContext(infer_seed, True): | |
wavs = chat_tts.generate_audio( | |
texts, params_infer_code, use_decoder=use_decoder | |
) | |
sample_rate = 24000 | |
if config.auto_gc: | |
devices.torch_gc() | |
gc.collect() | |
return [(sample_rate, np.array(wav).flatten().astype(np.float32)) for wav in wavs] | |
lru_cache_enabled = False | |
def setup_lru_cache(): | |
global generate_audio_batch | |
global lru_cache_enabled | |
if lru_cache_enabled: | |
return | |
lru_cache_enabled = True | |
def should_cache(*args, **kwargs): | |
spk_seed = kwargs.get("spk", -1) | |
infer_seed = kwargs.get("infer_seed", -1) | |
return spk_seed != -1 and infer_seed != -1 | |
lru_size = config.runtime_env_vars.lru_size | |
if isinstance(lru_size, int): | |
generate_audio_batch = conditional_cache(lru_size, should_cache)( | |
generate_audio_batch | |
) | |
logger.info(f"LRU cache enabled with size {lru_size}") | |
else: | |
logger.debug(f"LRU cache failed to enable, invalid size {lru_size}") | |
if __name__ == "__main__": | |
import soundfile as sf | |
# 测试batch生成 | |
inputs = ["你好[lbreak]", "再见[lbreak]", "长度不同的文本片段[lbreak]"] | |
outputs = generate_audio_batch(inputs, spk=5, infer_seed=42) | |
for i, (sample_rate, wav) in enumerate(outputs): | |
print(i, sample_rate, wav.shape) | |
sf.write(f"batch_{i}.wav", wav, sample_rate, format="wav") | |
# 单独生成 | |
for i, text in enumerate(inputs): | |
sample_rate, wav = generate_audio(text, spk=5, infer_seed=42) | |
print(i, sample_rate, wav.shape) | |
sf.write(f"one_{i}.wav", wav, sample_rate, format="wav") | |