|
|
|
"""
|
|
OpenLLM Real Models App - Final working version with correct attribute naming
|
|
"""
|
|
|
|
import gradio as gr
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import json
|
|
import logging
|
|
import sentencepiece as spm
|
|
import math
|
|
from pathlib import Path
|
|
from typing import Dict, Any, Optional
|
|
from huggingface_hub import snapshot_download
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
class GPTConfig:
|
|
"""GPT model configuration"""
|
|
def __init__(self, vocab_size=32000, n_layer=6, n_head=8, n_embd=512,
|
|
block_size=1024, dropout=0.1, bias=True, **kwargs):
|
|
|
|
self.vocab_size = vocab_size
|
|
self.n_layer = n_layer
|
|
self.n_head = n_head
|
|
self.n_embd = n_embd
|
|
self.block_size = block_size
|
|
self.dropout = dropout
|
|
self.bias = bias
|
|
|
|
class GPT(nn.Module):
|
|
"""GPT-style transformer model - EXACT architecture matching the saved model"""
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
assert config.vocab_size is not None
|
|
assert config.block_size is not None
|
|
self.config = config
|
|
|
|
|
|
self.transformer = nn.ModuleDict(dict(
|
|
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
|
wpe = nn.Embedding(config.block_size, config.n_embd),
|
|
drop = nn.Dropout(config.dropout),
|
|
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
|
ln_f = nn.LayerNorm(config.n_embd),
|
|
))
|
|
|
|
|
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=True)
|
|
|
|
|
|
self.apply(self._init_weights)
|
|
for pn, p in self.named_parameters():
|
|
if pn.endswith('c_proj.weight'):
|
|
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
|
|
|
|
def _init_weights(self, module):
|
|
if isinstance(module, nn.Linear):
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
|
if module.bias is not None:
|
|
torch.nn.init.zeros_(module.bias)
|
|
elif isinstance(module, nn.Embedding):
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
|
|
|
def forward(self, idx, targets=None):
|
|
device = idx.device
|
|
b, t = idx.size()
|
|
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
|
|
|
|
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0)
|
|
tok_emb = self.transformer.wte(idx)
|
|
pos_emb = self.transformer.wpe(pos)
|
|
x = self.transformer.drop(tok_emb + pos_emb)
|
|
|
|
for block in self.transformer.h:
|
|
x = block(x)
|
|
x = self.transformer.ln_f(x)
|
|
|
|
if targets is not None:
|
|
logits = self.lm_head(x)
|
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
|
|
else:
|
|
logits = self.lm_head(x[:, [-1], :])
|
|
loss = None
|
|
|
|
return logits, loss
|
|
|
|
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None, top_p=None, do_sample=True):
|
|
for _ in range(max_new_tokens):
|
|
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
|
|
logits, _ = self(idx_cond)
|
|
logits = logits[:, -1, :] / temperature
|
|
|
|
if top_k is not None:
|
|
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
|
logits[logits < v[:, [-1]]] = -float('Inf')
|
|
|
|
if top_p is not None:
|
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
|
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
|
sorted_indices_to_remove = cumulative_probs > top_p
|
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
|
sorted_indices_to_remove[..., 0] = 0
|
|
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
|
logits[indices_to_remove] = -float('Inf')
|
|
|
|
probs = F.softmax(logits, dim=-1)
|
|
if do_sample:
|
|
idx_next = torch.multinomial(probs, num_samples=1)
|
|
else:
|
|
_, idx_next = torch.topk(probs, k=1, dim=-1)
|
|
|
|
idx = torch.cat((idx, idx_next), dim=1)
|
|
|
|
return idx
|
|
|
|
class Block(nn.Module):
|
|
"""Transformer block with self-attention and feed-forward layers"""
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.ln_1 = nn.LayerNorm(config.n_embd)
|
|
self.attn = CausalSelfAttention(config)
|
|
self.ln_2 = nn.LayerNorm(config.n_embd)
|
|
self.mlp = MLP(config)
|
|
|
|
def forward(self, x):
|
|
x = x + self.attn(self.ln_1(x))
|
|
x = x + self.mlp(self.ln_2(x))
|
|
return x
|
|
|
|
class CausalSelfAttention(nn.Module):
|
|
"""Multi-head self-attention with causal masking - FINAL WORKING VERSION"""
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
assert config.n_embd % config.n_head == 0
|
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
|
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
|
self.attn_dropout = nn.Dropout(config.dropout)
|
|
self.resid_dropout = nn.Dropout(config.dropout)
|
|
self.n_head = config.n_head
|
|
self.n_embd = config.n_embd
|
|
self.dropout = config.dropout
|
|
self.use_bias = config.bias
|
|
|
|
|
|
|
|
if config.bias:
|
|
|
|
mask = torch.tril(torch.ones(config.block_size, config.block_size))
|
|
mask = mask.view(1, 1, config.block_size, config.block_size)
|
|
self.register_buffer('bias', mask)
|
|
else:
|
|
self.register_buffer('bias', None)
|
|
|
|
def forward(self, x):
|
|
B, T, C = x.size()
|
|
|
|
|
|
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
|
|
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
|
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
|
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
|
|
|
|
|
if self.bias is not None:
|
|
|
|
attn_mask = self.bias[:, :, :T, :T]
|
|
y = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=self.dropout if self.training else 0, is_causal=False)
|
|
else:
|
|
|
|
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True)
|
|
|
|
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
|
|
|
|
|
y = self.resid_dropout(self.c_proj(y))
|
|
return y
|
|
|
|
class MLP(nn.Module):
|
|
"""Multi-layer perceptron"""
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
|
|
self.gelu = nn.GELU()
|
|
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
|
|
self.dropout = nn.Dropout(config.dropout)
|
|
|
|
def forward(self, x):
|
|
x = self.c_fc(x)
|
|
x = self.gelu(x)
|
|
x = self.c_proj(x)
|
|
x = self.dropout(x)
|
|
return x
|
|
|
|
class RealOpenLLMInference:
|
|
"""Real OpenLLM inference engine using actual trained models"""
|
|
|
|
def __init__(self):
|
|
self.models = {}
|
|
self.tokenizers = {}
|
|
self.current_model = None
|
|
|
|
|
|
self.model_configs = {
|
|
"openllm-small-extended-4k": {
|
|
"name": "OpenLLM Small (4k steps)",
|
|
"description": "Real model trained for 4,000 steps - Early training stage",
|
|
"hf_repo": "lemms/openllm-small-extended-4k",
|
|
"training_steps": 4000,
|
|
"parameters": "35.8M"
|
|
},
|
|
"openllm-small-extended-6k": {
|
|
"name": "OpenLLM Small (6k steps)",
|
|
"description": "Real model trained for 6,000 steps - Improved coherence (Perplexity: 816.040)",
|
|
"hf_repo": "lemms/openllm-small-extended-6k",
|
|
"training_steps": 6000,
|
|
"parameters": "35.8M"
|
|
},
|
|
"openllm-small-extended-7k": {
|
|
"name": "OpenLLM Small (7k steps)",
|
|
"description": "Real model trained for 7,000 steps - Enhanced quality (Loss: 2.100, Perplexity: 8.200)",
|
|
"hf_repo": "lemms/openllm-small-extended-7k",
|
|
"training_steps": 7000,
|
|
"parameters": "35.8M"
|
|
},
|
|
"openllm-small-extended-8k": {
|
|
"name": "OpenLLM Small (8k steps)",
|
|
"description": "Real model trained for 8,000 steps - Sophisticated understanding",
|
|
"hf_repo": "lemms/openllm-small-extended-8k",
|
|
"training_steps": 8000,
|
|
"parameters": "35.8M"
|
|
},
|
|
"openllm-small-extended-9k": {
|
|
"name": "OpenLLM Small (9k steps)",
|
|
"description": "Real model trained for 9,000 steps - Best performing model",
|
|
"hf_repo": "lemms/openllm-small-extended-9k",
|
|
"training_steps": 9000,
|
|
"parameters": "35.8M"
|
|
},
|
|
"openllm-small-extended-10k": {
|
|
"name": "OpenLLM Small (10k steps)",
|
|
"description": "Real model trained for 10,000 steps - Latest extended training",
|
|
"hf_repo": "lemms/openllm-small-extended-10k",
|
|
"training_steps": 10000,
|
|
"parameters": "35.8M"
|
|
}
|
|
}
|
|
|
|
logger.info("π Real OpenLLM Inference Engine initialized")
|
|
|
|
def load_model_from_hf(self, model_id: str) -> bool:
|
|
"""Load a real model from Hugging Face"""
|
|
try:
|
|
config = self.model_configs.get(model_id)
|
|
if not config:
|
|
logger.error(f"β Unknown model ID: {model_id}")
|
|
return False
|
|
|
|
logger.info(f"π₯ Loading real model from HF: {config['hf_repo']}")
|
|
|
|
|
|
local_dir = snapshot_download(
|
|
repo_id=config['hf_repo'],
|
|
repo_type="model",
|
|
local_dir=f"temp_{model_id}",
|
|
allow_patterns=["*.pt", "*.json", "*.model", "*.bin"]
|
|
)
|
|
|
|
logger.info(f"β
Downloaded model to: {local_dir}")
|
|
|
|
|
|
success = self._load_model_and_tokenizer(local_dir, model_id)
|
|
if success:
|
|
self.current_model = model_id
|
|
logger.info(f"β
Successfully loaded real model: {model_id}")
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
except Exception as e:
|
|
logger.error(f"β Failed to load real model from HF {model_id}: {e}")
|
|
return False
|
|
|
|
def _load_model_and_tokenizer(self, model_dir: str, model_id: str) -> bool:
|
|
"""Load model and tokenizer from local directory"""
|
|
try:
|
|
model_path = Path(model_dir)
|
|
|
|
|
|
config_file = model_path / "config.json"
|
|
if config_file.exists():
|
|
with open(config_file, 'r') as f:
|
|
config_data = json.load(f)
|
|
|
|
logger.info(f"π Config data keys: {list(config_data.keys())}")
|
|
|
|
|
|
if 'model_config' in config_data:
|
|
|
|
model_config_data = config_data['model_config']
|
|
else:
|
|
|
|
model_config_data = config_data
|
|
|
|
|
|
expected_params = {
|
|
'vocab_size', 'n_layer', 'n_head', 'n_embd',
|
|
'block_size', 'dropout', 'bias'
|
|
}
|
|
|
|
config_kwargs = {}
|
|
for key, value in model_config_data.items():
|
|
if key in expected_params:
|
|
config_kwargs[key] = value
|
|
|
|
logger.info(f"π§ Using config parameters: {config_kwargs}")
|
|
model_config = GPTConfig(**config_kwargs)
|
|
else:
|
|
|
|
model_config = GPTConfig(
|
|
vocab_size=32000,
|
|
n_layer=6,
|
|
n_head=8,
|
|
n_embd=512,
|
|
block_size=1024,
|
|
dropout=0.1,
|
|
bias=True
|
|
)
|
|
|
|
|
|
model_file = model_path / "best_model.pt"
|
|
if not model_file.exists():
|
|
model_file = model_path / "model.pt"
|
|
if not model_file.exists():
|
|
model_file = model_path / "pytorch_model.bin"
|
|
|
|
if model_file.exists():
|
|
logger.info(f"π¦ Loading model from: {model_file}")
|
|
model = GPT(model_config)
|
|
checkpoint = torch.load(model_file, map_location='cpu')
|
|
|
|
|
|
if isinstance(checkpoint, dict):
|
|
if 'model_state_dict' in checkpoint:
|
|
|
|
state_dict = checkpoint['model_state_dict']
|
|
logger.info(f"π Loading from model_state_dict with {len(state_dict)} keys")
|
|
elif 'model' in checkpoint:
|
|
state_dict = checkpoint['model']
|
|
logger.info(f"π Loading from model with {len(state_dict)} keys")
|
|
else:
|
|
|
|
state_dict = checkpoint
|
|
logger.info(f"π Loading direct state dict with {len(state_dict)} keys")
|
|
else:
|
|
|
|
state_dict = checkpoint
|
|
logger.info(f"π Loading direct state dict with {len(state_dict)} keys")
|
|
|
|
|
|
model.load_state_dict(state_dict)
|
|
model.eval()
|
|
self.models[model_id] = model
|
|
logger.info(f"β
Model loaded successfully")
|
|
else:
|
|
logger.error(f"β Model file not found in {model_dir}")
|
|
logger.error(f" Available files: {list(model_path.glob('*'))}")
|
|
return False
|
|
|
|
|
|
tokenizer_file = model_path / "tokenizer.model"
|
|
if tokenizer_file.exists():
|
|
tokenizer = spm.SentencePieceProcessor()
|
|
tokenizer.load(str(tokenizer_file))
|
|
self.tokenizers[model_id] = tokenizer
|
|
logger.info(f"β
Tokenizer loaded successfully")
|
|
else:
|
|
logger.error(f"β Tokenizer file not found in {model_dir}")
|
|
return False
|
|
|
|
return True
|
|
|
|
except Exception as e:
|
|
logger.error(f"β Failed to load model and tokenizer: {e}")
|
|
import traceback
|
|
logger.error(f"π Full traceback: {traceback.format_exc()}")
|
|
return False
|
|
|
|
def generate_text(self, prompt: str, max_length: int = 100,
|
|
temperature: float = 0.7, top_k: int = 50,
|
|
top_p: float = 0.9) -> str:
|
|
"""Generate text using the loaded real model"""
|
|
if not self.current_model or self.current_model not in self.models:
|
|
return "β No model loaded. Please select a model first."
|
|
|
|
try:
|
|
model = self.models[self.current_model]
|
|
tokenizer = self.tokenizers[self.current_model]
|
|
|
|
|
|
input_ids = tokenizer.encode(prompt)
|
|
input_tensor = torch.tensor([input_ids], dtype=torch.long)
|
|
|
|
logger.info(f"π― Generating text with prompt: '{prompt[:50]}...'")
|
|
logger.info(f"π Parameters: max_length={max_length}, temperature={temperature}, top_k={top_k}, top_p={top_p}")
|
|
|
|
|
|
with torch.no_grad():
|
|
output_ids = model.generate(
|
|
input_tensor,
|
|
max_new_tokens=max_length,
|
|
temperature=temperature,
|
|
top_k=top_k,
|
|
top_p=top_p,
|
|
do_sample=True
|
|
)
|
|
|
|
|
|
generated_text = tokenizer.decode(output_ids[0].tolist())
|
|
|
|
|
|
if generated_text.startswith(prompt):
|
|
generated_text = generated_text[len(prompt):].strip()
|
|
|
|
logger.info(f"β
Generated text: '{generated_text[:100]}...'")
|
|
return generated_text
|
|
|
|
except Exception as e:
|
|
error_msg = f"β Generation failed: {str(e)}"
|
|
logger.error(error_msg)
|
|
import traceback
|
|
logger.error(f"π Full traceback: {traceback.format_exc()}")
|
|
return error_msg
|
|
|
|
|
|
inference_engine = RealOpenLLMInference()
|
|
|
|
def load_model_info(model_id: str) -> str:
|
|
"""Get information about a specific model"""
|
|
config = inference_engine.model_configs.get(model_id)
|
|
if config:
|
|
return f"**{config['name']}**\n\n{config['description']}\n\n**Parameters:** {config['parameters']}\n**Training Steps:** {config['training_steps']:,}"
|
|
return "β Model not found"
|
|
|
|
def generate_text_interface(model_id: str, prompt: str, max_length: int,
|
|
temperature: float, top_k: int, top_p: float) -> str:
|
|
"""Gradio interface function for text generation"""
|
|
try:
|
|
|
|
if model_id not in inference_engine.models:
|
|
logger.info(f"π Loading real model: {model_id}")
|
|
success = inference_engine.load_model_from_hf(model_id)
|
|
if not success:
|
|
return f"β Failed to load real model: {model_id}"
|
|
|
|
|
|
result = inference_engine.generate_text(
|
|
prompt=prompt,
|
|
max_length=max_length,
|
|
temperature=temperature,
|
|
top_k=top_k,
|
|
top_p=top_p
|
|
)
|
|
|
|
return result
|
|
|
|
except Exception as e:
|
|
error_msg = f"β Error in generation interface: {str(e)}"
|
|
logger.error(error_msg)
|
|
return error_msg
|
|
|
|
|
|
def create_interface():
|
|
"""Create the Gradio interface"""
|
|
|
|
with gr.Blocks(
|
|
title="π OpenLLM Real Models Space",
|
|
theme=gr.themes.Soft()
|
|
) as interface:
|
|
|
|
|
|
gr.Markdown("""
|
|
# π OpenLLM Real Models Space
|
|
|
|
Welcome to the OpenLLM Real Models Space! This interface uses **actual trained models** from Hugging Face.
|
|
|
|
## π― Real Trained Models
|
|
|
|
We provide **5 different real models** with varying training steps:
|
|
|
|
| Model | Training Steps | Parameters | Performance |
|
|
|-------|---------------|------------|-------------|
|
|
| **4k Model** | 4,000 | 35.8M | Early training stage |
|
|
| **6k Model** | 6,000 | 35.8M | Improved coherence (Perplexity: 816.040) |
|
|
| **7k Model** | 7,000 | 35.8M | Enhanced quality (Loss: 2.100, Perplexity: 8.200) |
|
|
| **8k Model** | 8,000 | 35.8M | Sophisticated understanding |
|
|
| **9k Model** | 9,000 | 35.8M | Best performing model |
|
|
| **10k Model** | 10,000 | 35.8M | Latest extended training |
|
|
|
|
**These are real GPT-style transformer models trained on Wikipedia passages from the SQuAD dataset.**
|
|
|
|
---
|
|
""")
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=1):
|
|
|
|
model_dropdown = gr.Dropdown(
|
|
choices=list(inference_engine.model_configs.keys()),
|
|
value="openllm-small-extended-10k",
|
|
label="π― Select Model",
|
|
info="Choose the real trained model to use"
|
|
)
|
|
|
|
|
|
model_info = gr.Markdown(
|
|
value=load_model_info("openllm-small-extended-10k"),
|
|
label="π Model Information"
|
|
)
|
|
|
|
|
|
model_dropdown.change(
|
|
fn=load_model_info,
|
|
inputs=[model_dropdown],
|
|
outputs=[model_info]
|
|
)
|
|
|
|
with gr.Column(scale=2):
|
|
|
|
prompt_input = gr.Textbox(
|
|
lines=5,
|
|
label="π Input Prompt",
|
|
placeholder="Enter your text prompt here...",
|
|
info="The text that will be used as input for generation"
|
|
)
|
|
|
|
|
|
with gr.Row():
|
|
max_length = gr.Slider(
|
|
minimum=10,
|
|
maximum=500,
|
|
value=100,
|
|
step=10,
|
|
label="π Max Length",
|
|
info="Maximum number of tokens to generate"
|
|
)
|
|
|
|
temperature = gr.Slider(
|
|
minimum=0.1,
|
|
maximum=2.0,
|
|
value=0.7,
|
|
step=0.1,
|
|
label="π‘οΈ Temperature",
|
|
info="Controls randomness (higher = more random)"
|
|
)
|
|
|
|
with gr.Row():
|
|
top_k = gr.Slider(
|
|
minimum=1,
|
|
maximum=100,
|
|
value=50,
|
|
step=1,
|
|
label="π Top-K",
|
|
info="Number of highest probability tokens to consider"
|
|
)
|
|
|
|
top_p = gr.Slider(
|
|
minimum=0.1,
|
|
maximum=1.0,
|
|
value=0.9,
|
|
step=0.1,
|
|
label="π Top-P",
|
|
info="Nucleus sampling parameter"
|
|
)
|
|
|
|
|
|
generate_btn = gr.Button(
|
|
"π Generate Text",
|
|
variant="primary",
|
|
size="lg"
|
|
)
|
|
|
|
|
|
output_text = gr.Textbox(
|
|
lines=10,
|
|
label="π― Generated Text",
|
|
info="The generated text will appear here"
|
|
)
|
|
|
|
|
|
generate_btn.click(
|
|
fn=generate_text_interface,
|
|
inputs=[model_dropdown, prompt_input, max_length, temperature, top_k, top_p],
|
|
outputs=[output_text]
|
|
)
|
|
|
|
|
|
gr.Markdown("""
|
|
---
|
|
|
|
## π§ Technical Details
|
|
|
|
- **Architecture**: GPT-style transformer decoder
|
|
- **Model Size**: Small (6 layers, 8 heads, 512 embedding dim)
|
|
- **Vocabulary**: 32k tokens (SentencePiece BPE)
|
|
- **Training Data**: Wikipedia passages from SQuAD dataset
|
|
- **Framework**: PyTorch with real trained models
|
|
- **Gradio Version**: 4.44.1 (latest)
|
|
|
|
**These models generate actual text based on their training on Wikipedia content.**
|
|
|
|
**Model Sources:**
|
|
- [4k Model](https://huggingface.co/lemms/openllm-small-extended-4k)
|
|
- [6k Model](https://huggingface.co/lemms/openllm-small-extended-6k)
|
|
- [7k Model](https://huggingface.co/lemms/openllm-small-extended-7k)
|
|
- [8k Model](https://huggingface.co/lemms/openllm-small-extended-8k)
|
|
- [9k Model](https://huggingface.co/lemms/openllm-small-extended-9k)
|
|
- [10k Model](https://huggingface.co/lemms/openllm-small-extended-10k)
|
|
""")
|
|
|
|
return interface
|
|
|
|
|
|
if __name__ == "__main__":
|
|
interface = create_interface()
|
|
interface.launch(
|
|
server_name="0.0.0.0",
|
|
server_port=7860,
|
|
share=False,
|
|
debug=True
|
|
)
|
|
|
|
|