llm / app_with_10k.py
lemms's picture
Upload app_with_10k.py with huggingface_hub
8f3458c verified
#!/usr/bin/env python3
"""
OpenLLM Real Models App - Final working version with correct attribute naming
"""
import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
import json
import logging
import sentencepiece as spm
import math
from pathlib import Path
from typing import Dict, Any, Optional
from huggingface_hub import snapshot_download
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class GPTConfig:
"""GPT model configuration"""
def __init__(self, vocab_size=32000, n_layer=6, n_head=8, n_embd=512,
block_size=1024, dropout=0.1, bias=True, **kwargs):
# Accept any additional kwargs to handle extra config fields
self.vocab_size = vocab_size
self.n_layer = n_layer
self.n_head = n_head
self.n_embd = n_embd
self.block_size = block_size
self.dropout = dropout
self.bias = bias
class GPT(nn.Module):
"""GPT-style transformer model - EXACT architecture matching the saved model"""
def __init__(self, config):
super().__init__()
assert config.vocab_size is not None
assert config.block_size is not None
self.config = config
# Create the transformer module with the exact naming convention
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
drop = nn.Dropout(config.dropout),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embd),
))
# Language model head - MUST have bias to match saved model
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=True)
# Initialize weights
self.apply(self._init_weights)
for pn, p in self.named_parameters():
if pn.endswith('c_proj.weight'):
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
device = idx.device
b, t = idx.size()
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0)
tok_emb = self.transformer.wte(idx)
pos_emb = self.transformer.wpe(pos)
x = self.transformer.drop(tok_emb + pos_emb)
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
if targets is not None:
logits = self.lm_head(x)
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
else:
logits = self.lm_head(x[:, [-1], :])
loss = None
return logits, loss
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None, top_p=None, do_sample=True):
for _ in range(max_new_tokens):
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
logits, _ = self(idx_cond)
logits = logits[:, -1, :] / temperature
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
if top_p is not None:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
logits[indices_to_remove] = -float('Inf')
probs = F.softmax(logits, dim=-1)
if do_sample:
idx_next = torch.multinomial(probs, num_samples=1)
else:
_, idx_next = torch.topk(probs, k=1, dim=-1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
class Block(nn.Module):
"""Transformer block with self-attention and feed-forward layers"""
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class CausalSelfAttention(nn.Module):
"""Multi-head self-attention with causal masking - FINAL WORKING VERSION"""
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.dropout = config.dropout
self.use_bias = config.bias # Use different name for the boolean flag
# REGISTER THE ATTENTION BIAS as a buffer (not parameter) to match saved model
# This is actually an attention mask, not a learnable bias
if config.bias:
# Create a causal attention mask buffer
mask = torch.tril(torch.ones(config.block_size, config.block_size))
mask = mask.view(1, 1, config.block_size, config.block_size)
self.register_buffer('bias', mask) # This matches the saved model's 'bias' key
else:
self.register_buffer('bias', None)
def forward(self, x):
B, T, C = x.size()
# Calculate query, key, values for all heads
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
# Causal self-attention using the bias mask
if self.bias is not None:
# Use the causal mask
attn_mask = self.bias[:, :, :T, :T]
y = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=self.dropout if self.training else 0, is_causal=False)
else:
# Use built-in causal attention
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True)
y = y.transpose(1, 2).contiguous().view(B, T, C)
# Output projection
y = self.resid_dropout(self.c_proj(y))
return y
class MLP(nn.Module):
"""Multi-layer perceptron"""
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
self.gelu = nn.GELU()
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
x = self.dropout(x)
return x
class RealOpenLLMInference:
"""Real OpenLLM inference engine using actual trained models"""
def __init__(self):
self.models = {}
self.tokenizers = {}
self.current_model = None
# Real model configurations from Hugging Face
self.model_configs = {
"openllm-small-extended-4k": {
"name": "OpenLLM Small (4k steps)",
"description": "Real model trained for 4,000 steps - Early training stage",
"hf_repo": "lemms/openllm-small-extended-4k",
"training_steps": 4000,
"parameters": "35.8M"
},
"openllm-small-extended-6k": {
"name": "OpenLLM Small (6k steps)",
"description": "Real model trained for 6,000 steps - Improved coherence (Perplexity: 816.040)",
"hf_repo": "lemms/openllm-small-extended-6k",
"training_steps": 6000,
"parameters": "35.8M"
},
"openllm-small-extended-7k": {
"name": "OpenLLM Small (7k steps)",
"description": "Real model trained for 7,000 steps - Enhanced quality (Loss: 2.100, Perplexity: 8.200)",
"hf_repo": "lemms/openllm-small-extended-7k",
"training_steps": 7000,
"parameters": "35.8M"
},
"openllm-small-extended-8k": {
"name": "OpenLLM Small (8k steps)",
"description": "Real model trained for 8,000 steps - Sophisticated understanding",
"hf_repo": "lemms/openllm-small-extended-8k",
"training_steps": 8000,
"parameters": "35.8M"
},
"openllm-small-extended-9k": {
"name": "OpenLLM Small (9k steps)",
"description": "Real model trained for 9,000 steps - Best performing model",
"hf_repo": "lemms/openllm-small-extended-9k",
"training_steps": 9000,
"parameters": "35.8M"
},
"openllm-small-extended-10k": {
"name": "OpenLLM Small (10k steps)",
"description": "Real model trained for 10,000 steps - Latest extended training",
"hf_repo": "lemms/openllm-small-extended-10k",
"training_steps": 10000,
"parameters": "35.8M"
}
}
logger.info("πŸš€ Real OpenLLM Inference Engine initialized")
def load_model_from_hf(self, model_id: str) -> bool:
"""Load a real model from Hugging Face"""
try:
config = self.model_configs.get(model_id)
if not config:
logger.error(f"❌ Unknown model ID: {model_id}")
return False
logger.info(f"πŸ“₯ Loading real model from HF: {config['hf_repo']}")
# Download model from Hugging Face
local_dir = snapshot_download(
repo_id=config['hf_repo'],
repo_type="model",
local_dir=f"temp_{model_id}",
allow_patterns=["*.pt", "*.json", "*.model", "*.bin"]
)
logger.info(f"βœ… Downloaded model to: {local_dir}")
# Load model and tokenizer
success = self._load_model_and_tokenizer(local_dir, model_id)
if success:
self.current_model = model_id
logger.info(f"βœ… Successfully loaded real model: {model_id}")
return True
else:
return False
except Exception as e:
logger.error(f"❌ Failed to load real model from HF {model_id}: {e}")
return False
def _load_model_and_tokenizer(self, model_dir: str, model_id: str) -> bool:
"""Load model and tokenizer from local directory"""
try:
model_path = Path(model_dir)
# Load model configuration
config_file = model_path / "config.json"
if config_file.exists():
with open(config_file, 'r') as f:
config_data = json.load(f)
logger.info(f"πŸ“‹ Config data keys: {list(config_data.keys())}")
# Handle different config structures
if 'model_config' in config_data:
# Extract model_config section
model_config_data = config_data['model_config']
else:
# Use the entire config as model config
model_config_data = config_data
# Create GPTConfig with only the expected parameters
expected_params = {
'vocab_size', 'n_layer', 'n_head', 'n_embd',
'block_size', 'dropout', 'bias'
}
config_kwargs = {}
for key, value in model_config_data.items():
if key in expected_params:
config_kwargs[key] = value
logger.info(f"πŸ”§ Using config parameters: {config_kwargs}")
model_config = GPTConfig(**config_kwargs)
else:
# Default configuration for OpenLLM small models
model_config = GPTConfig(
vocab_size=32000,
n_layer=6,
n_head=8,
n_embd=512,
block_size=1024,
dropout=0.1,
bias=True
)
# Load model weights
model_file = model_path / "best_model.pt"
if not model_file.exists():
model_file = model_path / "model.pt"
if not model_file.exists():
model_file = model_path / "pytorch_model.bin"
if model_file.exists():
logger.info(f"πŸ“¦ Loading model from: {model_file}")
model = GPT(model_config)
checkpoint = torch.load(model_file, map_location='cpu')
# Handle different checkpoint formats
if isinstance(checkpoint, dict):
if 'model_state_dict' in checkpoint:
# Extract the actual model weights
state_dict = checkpoint['model_state_dict']
logger.info(f"πŸ“‹ Loading from model_state_dict with {len(state_dict)} keys")
elif 'model' in checkpoint:
state_dict = checkpoint['model']
logger.info(f"πŸ“‹ Loading from model with {len(state_dict)} keys")
else:
# Try to load directly as state dict
state_dict = checkpoint
logger.info(f"πŸ“‹ Loading direct state dict with {len(state_dict)} keys")
else:
# Direct state dict
state_dict = checkpoint
logger.info(f"πŸ“‹ Loading direct state dict with {len(state_dict)} keys")
# Load the state dict
model.load_state_dict(state_dict)
model.eval()
self.models[model_id] = model
logger.info(f"βœ… Model loaded successfully")
else:
logger.error(f"❌ Model file not found in {model_dir}")
logger.error(f" Available files: {list(model_path.glob('*'))}")
return False
# Load tokenizer
tokenizer_file = model_path / "tokenizer.model"
if tokenizer_file.exists():
tokenizer = spm.SentencePieceProcessor()
tokenizer.load(str(tokenizer_file))
self.tokenizers[model_id] = tokenizer
logger.info(f"βœ… Tokenizer loaded successfully")
else:
logger.error(f"❌ Tokenizer file not found in {model_dir}")
return False
return True
except Exception as e:
logger.error(f"❌ Failed to load model and tokenizer: {e}")
import traceback
logger.error(f"πŸ“‹ Full traceback: {traceback.format_exc()}")
return False
def generate_text(self, prompt: str, max_length: int = 100,
temperature: float = 0.7, top_k: int = 50,
top_p: float = 0.9) -> str:
"""Generate text using the loaded real model"""
if not self.current_model or self.current_model not in self.models:
return "❌ No model loaded. Please select a model first."
try:
model = self.models[self.current_model]
tokenizer = self.tokenizers[self.current_model]
# Tokenize input
input_ids = tokenizer.encode(prompt)
input_tensor = torch.tensor([input_ids], dtype=torch.long)
logger.info(f"🎯 Generating text with prompt: '{prompt[:50]}...'")
logger.info(f"πŸ“Š Parameters: max_length={max_length}, temperature={temperature}, top_k={top_k}, top_p={top_p}")
# Generate text
with torch.no_grad():
output_ids = model.generate(
input_tensor,
max_new_tokens=max_length,
temperature=temperature,
top_k=top_k,
top_p=top_p,
do_sample=True
)
# Decode output
generated_text = tokenizer.decode(output_ids[0].tolist())
# Remove the input prompt from the output
if generated_text.startswith(prompt):
generated_text = generated_text[len(prompt):].strip()
logger.info(f"βœ… Generated text: '{generated_text[:100]}...'")
return generated_text
except Exception as e:
error_msg = f"❌ Generation failed: {str(e)}"
logger.error(error_msg)
import traceback
logger.error(f"πŸ“‹ Full traceback: {traceback.format_exc()}")
return error_msg
# Initialize the real inference engine
inference_engine = RealOpenLLMInference()
def load_model_info(model_id: str) -> str:
"""Get information about a specific model"""
config = inference_engine.model_configs.get(model_id)
if config:
return f"**{config['name']}**\n\n{config['description']}\n\n**Parameters:** {config['parameters']}\n**Training Steps:** {config['training_steps']:,}"
return "❌ Model not found"
def generate_text_interface(model_id: str, prompt: str, max_length: int,
temperature: float, top_k: int, top_p: float) -> str:
"""Gradio interface function for text generation"""
try:
# Load model if not already loaded
if model_id not in inference_engine.models:
logger.info(f"πŸ”„ Loading real model: {model_id}")
success = inference_engine.load_model_from_hf(model_id)
if not success:
return f"❌ Failed to load real model: {model_id}"
# Generate text
result = inference_engine.generate_text(
prompt=prompt,
max_length=max_length,
temperature=temperature,
top_k=top_k,
top_p=top_p
)
return result
except Exception as e:
error_msg = f"❌ Error in generation interface: {str(e)}"
logger.error(error_msg)
return error_msg
# Create Gradio interface
def create_interface():
"""Create the Gradio interface"""
with gr.Blocks(
title="πŸš€ OpenLLM Real Models Space",
theme=gr.themes.Soft()
) as interface:
# Header
gr.Markdown("""
# πŸš€ OpenLLM Real Models Space
Welcome to the OpenLLM Real Models Space! This interface uses **actual trained models** from Hugging Face.
## 🎯 Real Trained Models
We provide **5 different real models** with varying training steps:
| Model | Training Steps | Parameters | Performance |
|-------|---------------|------------|-------------|
| **4k Model** | 4,000 | 35.8M | Early training stage |
| **6k Model** | 6,000 | 35.8M | Improved coherence (Perplexity: 816.040) |
| **7k Model** | 7,000 | 35.8M | Enhanced quality (Loss: 2.100, Perplexity: 8.200) |
| **8k Model** | 8,000 | 35.8M | Sophisticated understanding |
| **9k Model** | 9,000 | 35.8M | Best performing model |
| **10k Model** | 10,000 | 35.8M | Latest extended training |
**These are real GPT-style transformer models trained on Wikipedia passages from the SQuAD dataset.**
---
""")
with gr.Row():
with gr.Column(scale=1):
# Model selection
model_dropdown = gr.Dropdown(
choices=list(inference_engine.model_configs.keys()),
value="openllm-small-extended-10k",
label="🎯 Select Model",
info="Choose the real trained model to use"
)
# Model information display
model_info = gr.Markdown(
value=load_model_info("openllm-small-extended-10k"),
label="πŸ“‹ Model Information"
)
# Update model info when selection changes
model_dropdown.change(
fn=load_model_info,
inputs=[model_dropdown],
outputs=[model_info]
)
with gr.Column(scale=2):
# Input prompt
prompt_input = gr.Textbox(
lines=5,
label="πŸ“ Input Prompt",
placeholder="Enter your text prompt here...",
info="The text that will be used as input for generation"
)
# Generation parameters
with gr.Row():
max_length = gr.Slider(
minimum=10,
maximum=500,
value=100,
step=10,
label="πŸ“ Max Length",
info="Maximum number of tokens to generate"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="🌑️ Temperature",
info="Controls randomness (higher = more random)"
)
with gr.Row():
top_k = gr.Slider(
minimum=1,
maximum=100,
value=50,
step=1,
label="πŸ” Top-K",
info="Number of highest probability tokens to consider"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.1,
label="πŸ“Š Top-P",
info="Nucleus sampling parameter"
)
# Generate button
generate_btn = gr.Button(
"πŸš€ Generate Text",
variant="primary",
size="lg"
)
# Output
output_text = gr.Textbox(
lines=10,
label="🎯 Generated Text",
info="The generated text will appear here"
)
# Connect the generate button
generate_btn.click(
fn=generate_text_interface,
inputs=[model_dropdown, prompt_input, max_length, temperature, top_k, top_p],
outputs=[output_text]
)
# Footer
gr.Markdown("""
---
## πŸ”§ Technical Details
- **Architecture**: GPT-style transformer decoder
- **Model Size**: Small (6 layers, 8 heads, 512 embedding dim)
- **Vocabulary**: 32k tokens (SentencePiece BPE)
- **Training Data**: Wikipedia passages from SQuAD dataset
- **Framework**: PyTorch with real trained models
- **Gradio Version**: 4.44.1 (latest)
**These models generate actual text based on their training on Wikipedia content.**
**Model Sources:**
- [4k Model](https://huggingface.co/lemms/openllm-small-extended-4k)
- [6k Model](https://huggingface.co/lemms/openllm-small-extended-6k)
- [7k Model](https://huggingface.co/lemms/openllm-small-extended-7k)
- [8k Model](https://huggingface.co/lemms/openllm-small-extended-8k)
- [9k Model](https://huggingface.co/lemms/openllm-small-extended-9k)
- [10k Model](https://huggingface.co/lemms/openllm-small-extended-10k)
""")
return interface
# Create and launch the interface
if __name__ == "__main__":
interface = create_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True
)