Spaces:
Paused
Paused
import gradio as gr | |
from gradio_client import Client | |
def get_caption(image_in): | |
kosmos2_client = Client("https://ydshieh-kosmos-2.hf.space/") | |
kosmos2_result = kosmos2_client.predict( | |
image_in, # str (filepath or URL to image) in 'Test Image' Image component | |
"Detailed", # str in 'Description Type' Radio component | |
fn_index=4 | |
) | |
print(f"KOSMOS2 RETURNS: {kosmos2_result}") | |
with open(kosmos2_result[1], 'r') as f: | |
data = json.load(f) | |
reconstructed_sentence = [] | |
for sublist in data: | |
reconstructed_sentence.append(sublist[0]) | |
full_sentence = ' '.join(reconstructed_sentence) | |
#print(full_sentence) | |
# Find the pattern matching the expected format ("Describe this image in detail:" followed by optional space and then the rest)... | |
pattern = r'^Describe this image in detail:\s*(.*)$' | |
# Apply the regex pattern to extract the description text. | |
match = re.search(pattern, full_sentence) | |
if match: | |
description = match.group(1) | |
print(description) | |
else: | |
print("Unable to locate valid description.") | |
# Find the last occurrence of "." | |
#last_period_index = full_sentence.rfind('.') | |
# Truncate the string up to the last period | |
#truncated_caption = full_sentence[:last_period_index + 1] | |
# print(truncated_caption) | |
#print(f"\n—\nIMAGE CAPTION: {truncated_caption}") | |
return description | |
def get_magnet(prompt): | |
amended_prompt = f"No Music. {prompt}" | |
client = Client("https://fffiloni-magnet.hf.space/--replicas/oo8sb/") | |
result = client.predict( | |
"facebook/magnet-small-10secs", # Literal['facebook/magnet-small-10secs', 'facebook/magnet-medium-10secs', 'facebook/magnet-small-30secs', 'facebook/magnet-medium-30secs', 'facebook/audio-magnet-small', 'facebook/audio-magnet-medium'] in 'Model' Radio component | |
None, # str in 'Model Path (custom models)' Textbox component | |
amended_prompt, # str in 'Input Text' Textbox component | |
3, # float in 'Temperature' Number component | |
0.9, # float in 'Top-p' Number component | |
10, # float in 'Max CFG coefficient' Number component | |
1, # float in 'Min CFG coefficient' Number component | |
20, # float in 'Decoding Steps (stage 1)' Number component | |
10, # float in 'Decoding Steps (stage 2)' Number component | |
10, # float in 'Decoding Steps (stage 3)' Number component | |
10, # float in 'Decoding Steps (stage 4)' Number component | |
"prod-stride1 (new!)", # Literal['max-nonoverlap', 'prod-stride1 (new!)'] in 'Span Scoring' Radio component | |
api_name="/predict_full" | |
) | |
print(result) | |
return result[0] | |
def get_audioldm(prompt): | |
client = Client("https://haoheliu-audioldm2-text2audio-text2music.hf.space/") | |
result = client.predict( | |
prompt, # str in 'Input text' Textbox component | |
"Low quality. Music.", # str in 'Negative prompt' Textbox component | |
5, # int | float (numeric value between 5 and 15) in 'Duration (seconds)' Slider component | |
0, # int | float (numeric value between 0 and 7) in 'Guidance scale' Slider component | |
5, # int | float in 'Seed' Number component | |
1, # int | float (numeric value between 1 and 5) in 'Number waveforms to generate' Slider component | |
fn_index=1 | |
) | |
print(result) | |
return result | |
def infer(image_in): | |
caption = get_caption(image_in) | |
magnet_result = get_magnet(caption) | |
audioldm_result = get_audioldm(caption) | |
return magnet_result, audioldm_result | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.HTML(""" | |
<h2 style="text-align: center;"> | |
Image to SFX | |
</h2> | |
<p style="text-align: center;"> | |
Compare MAGNet and AudioLDM2 sound effects generation from image caption (Kosmos2) | |
</p> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
image_in = gr.Image(sources=["upload"], type="filepath", label="Image input") | |
submit_btn = gr.Button("Submit") | |
with gr.Column(): | |
magnet_o = gr.Video(label="MAGNet output") | |
audioldm2_o = gr.Video(label="AudioLDM2 output") | |
submit_btn.click( | |
fn=infer, | |
inputs=[image_in], | |
outputs=[magnet_o, audioldm2_o] | |
) | |
demo.queue(max_size=10).launch(debug=True) |