Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load the model and tokenizer (fine-tuned or pre-trained) | |
model_name = "EleutherAI/gpt-neo-1.3B" # Replace with your fine-tuned model path | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
# Define the function to transform requests | |
def transform_request(instruction): | |
inputs = tokenizer(instruction, return_tensors="pt", truncation=True) | |
outputs = model.generate(**inputs, max_length=100) | |
code = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return code | |
# Create the Gradio interface | |
interface = gr.Interface( | |
fn=transform_request, | |
inputs="text", | |
outputs="text", | |
title="Code Transformer", | |
description="Enter an instruction to generate Python code.", | |
) | |
if __name__ == "__main__": | |
interface.launch() | |