import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer (fine-tuned or pre-trained) model_name = "EleutherAI/gpt-neo-1.3B" # Replace with your fine-tuned model path tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Define the function to transform requests def transform_request(instruction): inputs = tokenizer(instruction, return_tensors="pt", truncation=True) outputs = model.generate(**inputs, max_length=100) code = tokenizer.decode(outputs[0], skip_special_tokens=True) return code # Create the Gradio interface interface = gr.Interface( fn=transform_request, inputs="text", outputs="text", title="Code Transformer", description="Enter an instruction to generate Python code.", ) if __name__ == "__main__": interface.launch()