TranSVAE / app.py
ldkong's picture
Update app.py
5c941b8
raw history blame
No virus
39.2 kB
import gradio as gr
import argparse
import cv2
import imageio
import math
from math import ceil
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
class RelationModuleMultiScale(torch.nn.Module):
def __init__(self, img_feature_dim, num_bottleneck, num_frames):
super(RelationModuleMultiScale, self).__init__()
self.subsample_num = 3
self.img_feature_dim = img_feature_dim
self.scales = [i for i in range(num_frames, 1, -1)]
self.relations_scales = []
self.subsample_scales = []
for scale in self.scales:
relations_scale = self.return_relationset(num_frames, scale)
self.relations_scales.append(relations_scale)
self.subsample_scales.append(min(self.subsample_num, len(relations_scale)))
self.num_frames = num_frames
self.fc_fusion_scales = nn.ModuleList() # high-tech modulelist
for i in range(len(self.scales)):
scale = self.scales[i]
fc_fusion = nn.Sequential(nn.ReLU(), nn.Linear(scale * self.img_feature_dim, num_bottleneck), nn.ReLU())
self.fc_fusion_scales += [fc_fusion]
def forward(self, input):
act_scale_1 = input[:, self.relations_scales[0][0] , :]
act_scale_1 = act_scale_1.view(act_scale_1.size(0), self.scales[0] * self.img_feature_dim)
act_scale_1 = self.fc_fusion_scales[0](act_scale_1)
act_scale_1 = act_scale_1.unsqueeze(1)
act_all = act_scale_1.clone()
for scaleID in range(1, len(self.scales)):
act_relation_all = torch.zeros_like(act_scale_1)
num_total_relations = len(self.relations_scales[scaleID])
num_select_relations = self.subsample_scales[scaleID]
idx_relations_evensample = [int(ceil(i * num_total_relations / num_select_relations)) for i in range(num_select_relations)]
for idx in idx_relations_evensample:
act_relation = input[:, self.relations_scales[scaleID][idx], :]
act_relation = act_relation.view(act_relation.size(0), self.scales[scaleID] * self.img_feature_dim)
act_relation = self.fc_fusion_scales[scaleID](act_relation)
act_relation = act_relation.unsqueeze(1)
act_relation_all += act_relation
act_all = torch.cat((act_all, act_relation_all), 1)
return act_all
def return_relationset(self, num_frames, num_frames_relation):
import itertools
return list(itertools.combinations([i for i in range(num_frames)], num_frames_relation))
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='Sprite', help='datasets')
parser.add_argument('--data_root', default='dataset', help='root directory for data')
parser.add_argument('--num_class', type=int, default=15, help='the number of class for jester dataset')
parser.add_argument('--input_type', default='image', choices=['feature', 'image'], help='the type of input')
parser.add_argument('--src', default='domain_1', help='source domain')
parser.add_argument('--tar', default='domain_2', help='target domain')
parser.add_argument('--num_segments', type=int, default=8, help='the number of frame segment')
parser.add_argument('--backbone', type=str, default="dcgan", choices=['dcgan', 'resnet101', 'I3Dpretrain','I3Dfinetune'], help='backbone')
parser.add_argument('--channels', default=3, type=int, help='input channels for image inputs')
parser.add_argument('--add_fc', default=1, type=int, metavar='M', help='number of additional fc layers (excluding the last fc layer) (e.g. 0, 1, 2)')
parser.add_argument('--fc_dim', type=int, default=1024, help='dimension of added fc')
parser.add_argument('--frame_aggregation', type=str, default='trn', choices=[ 'rnn', 'trn'], help='aggregation of frame features (none if baseline_type is not video)')
parser.add_argument('--dropout_rate', default=0.5, type=float, help='dropout ratio for frame-level feature (default: 0.5)')
parser.add_argument('--f_dim', type=int, default=512, help='dim of f')
parser.add_argument('--z_dim', type=int, default=512, help='dimensionality of z_t')
parser.add_argument('--f_rnn_layers', type=int, default=1, help='number of layers (content lstm)')
parser.add_argument('--use_bn', type=str, default='none', choices=['none', 'AdaBN', 'AutoDIAL'], help='normalization-based methods')
parser.add_argument('--prior_sample', type=str, default='random', choices=['random', 'post'], help='how to sample prior')
parser.add_argument('--batch_size', default=128, type=int, help='-batch size')
parser.add_argument('--use_attn', type=str, default='TransAttn', choices=['none', 'TransAttn', 'general'], help='attention-mechanism')
parser.add_argument('--data_threads', type=int, default=5, help='number of data loading threads')
opt = parser.parse_args(args=[])
class GradReverse(Function):
@staticmethod
def forward(ctx, x, beta):
ctx.beta = beta
return x.view_as(x)
@staticmethod
def backward(ctx, grad_output):
grad_input = grad_output.neg() * ctx.beta
return grad_input, None
class TransferVAE_Video(nn.Module):
def __init__(self, opt):
super(TransferVAE_Video, self).__init__()
self.f_dim = opt.f_dim
self.z_dim = opt.z_dim
self.fc_dim = opt.fc_dim
self.channels = opt.channels
self.input_type = opt.input_type
self.frames = opt.num_segments
self.use_bn = opt.use_bn
self.frame_aggregation = opt.frame_aggregation
self.batch_size = opt.batch_size
self.use_attn = opt.use_attn
self.dropout_rate = opt.dropout_rate
self.num_class = opt.num_class
self.prior_sample = opt.prior_sample
if self.input_type == 'image':
import dcgan_64
self.encoder = dcgan_64.encoder(self.fc_dim, self.channels)
self.decoder = dcgan_64.decoder_woSkip(self.z_dim + self.f_dim, self.channels)
self.fc_output_dim = self.fc_dim
elif self.input_type == 'feature':
if opt.backbone == 'resnet101':
model_backnone = getattr(torchvision.models, opt.backbone)(True) # model_test is only used for getting the dim #
self.input_dim = model_backnone.fc.in_features
elif opt.backbone == 'I3Dpretrain':
self.input_dim = 2048
elif opt.backbone == 'I3Dfinetune':
self.input_dim = 2048
self.add_fc = opt.add_fc
self.enc_fc_layer1 = nn.Linear(self.input_dim, self.fc_dim)
self.dec_fc_layer1 = nn.Linear(self.fc_dim, self.input_dim)
self.fc_output_dim = self.fc_dim
if self.use_bn == 'shared':
self.bn_enc_layer1 = nn.BatchNorm1d(self.fc_output_dim)
self.bn_dec_layer1 = nn.BatchNorm1d(self.input_dim)
elif self.use_bn == 'separated':
self.bn_S_enc_layer1 = nn.BatchNorm1d(self.fc_output_dim)
self.bn_T_enc_layer1 = nn.BatchNorm1d(self.fc_output_dim)
self.bn_S_dec_layer1 = nn.BatchNorm1d(self.input_dim)
self.bn_T_dec_layer1 = nn.BatchNorm1d(self.input_dim)
if self.add_fc > 1:
self.enc_fc_layer2 = nn.Linear(self.fc_dim, self.fc_dim)
self.dec_fc_layer2 = nn.Linear(self.fc_dim, self.fc_dim)
self.fc_output_dim = self.fc_dim
## use batchnormalization or not (if yes whether the source and target share the same batchnormalization)
if self.use_bn == 'shared':
self.bn_enc_layer2 = nn.BatchNorm1d(self.fc_output_dim)
self.bn_dec_layer2 = nn.BatchNorm1d(self.fc_dim)
elif self.use_bn == 'separated':
self.bn_S_enc_layer2 = nn.BatchNorm1d(self.fc_output_dim)
self.bn_T_enc_layer2 = nn.BatchNorm1d(self.fc_output_dim)
self.bn_S_dec_layer2 = nn.BatchNorm1d(self.fc_dim)
self.bn_T_dec_layer2 = nn.BatchNorm1d(self.fc_dim)
if self.add_fc > 2:
self.enc_fc_layer3 = nn.Linear(self.fc_dim, self.fc_dim)
self.dec_fc_layer3 = nn.Linear(self.fc_dim, self.fc_dim)
self.fc_output_dim = self.fc_dim
## use batchnormalization or not (if yes whether the source and target share the same batchnormalization)
if self.use_bn == 'shared':
self.bn_enc_layer3 = nn.BatchNorm1d(self.fc_output_dim)
self.bn_dec_layer3 = nn.BatchNorm1d(self.fc_dim)
elif self.use_bn == 'separated':
self.bn_S_enc_layer3 = nn.BatchNorm1d(self.fc_output_dim)
self.bn_T_enc_layer3 = nn.BatchNorm1d(self.fc_output_dim)
self.bn_S_dec_layer3 = nn.BatchNorm1d(self.fc_dim)
self.bn_T_dec_layer3 = nn.BatchNorm1d(self.fc_dim)
self.z_2_out = nn.Linear(self.z_dim + self.f_dim, self.fc_output_dim)
## nonlinearity and dropout
self.relu = nn.LeakyReLU(0.1)
self.dropout_f = nn.Dropout(p=self.dropout_rate)
self.dropout_v = nn.Dropout(p=self.dropout_rate)
# -------------------------------
## Disentangle strcuture
# -------------------------------
#self.hidden_dim = opt.rnn_size
self.hidden_dim = opt.z_dim
self.f_rnn_layers = opt.f_rnn_layers
# Prior of content is a uniform Gaussian and prior of the dynamics is an LSTM
self.z_prior_lstm_ly1 = nn.LSTMCell(self.z_dim, self.hidden_dim)
self.z_prior_lstm_ly2 = nn.LSTMCell(self.hidden_dim, self.hidden_dim)
self.z_prior_mean = nn.Linear(self.hidden_dim, self.z_dim)
self.z_prior_logvar = nn.Linear(self.hidden_dim, self.z_dim)
# POSTERIOR DISTRIBUTION NETWORKS
# content and motion features share one lstm
self.z_lstm = nn.LSTM(self.fc_output_dim, self.hidden_dim, self.f_rnn_layers, bidirectional=True, batch_first=True)
self.f_mean = nn.Linear(self.hidden_dim * 2, self.f_dim)
self.f_logvar = nn.Linear(self.hidden_dim * 2, self.f_dim)
self.z_rnn = nn.RNN(self.hidden_dim * 2, self.hidden_dim, batch_first=True)
# Each timestep is for each z so no reshaping and feature mixing
self.z_mean = nn.Linear(self.hidden_dim, self.z_dim)
self.z_logvar = nn.Linear(self.hidden_dim, self.z_dim)
# -------------------------------
## z_t constraints
# -------------------------------
## adversarial loss for frame features z_t
self.fc_feature_domain_frame = nn.Linear(self.z_dim, self.z_dim)
self.fc_classifier_domain_frame = nn.Linear(self.z_dim, 2)
## #------ aggregate frame-based features (frame feature --> video feature) ------#
if self.frame_aggregation == 'rnn':
self.bilstm = nn.LSTM(self.z_dim, self.z_dim * 2, self.f_rnn_layers, bidirectional=True, batch_first=True)
self.feat_aggregated_dim = self.z_dim * 2
elif self.frame_aggregation == 'trn': # 4. TRN (ECCV 2018) ==> fix segment # for both train/val
self.num_bottleneck = 256 # 256
self.TRN = RelationModuleMultiScale(self.z_dim, self.num_bottleneck, self.frames)
self.bn_trn_S = nn.BatchNorm1d(self.num_bottleneck)
self.bn_trn_T = nn.BatchNorm1d(self.num_bottleneck)
self.feat_aggregated_dim = self.num_bottleneck
## adversarial loss for video features
self.fc_feature_domain_video = nn.Linear(self.feat_aggregated_dim, self.feat_aggregated_dim)
self.fc_classifier_domain_video = nn.Linear(self.feat_aggregated_dim, 2)
## adversarial loss for each relation of features
if self.frame_aggregation == 'trn':
self.relation_domain_classifier_all = nn.ModuleList()
for i in range(self.frames-1):
relation_domain_classifier = nn.Sequential(
nn.Linear(self.feat_aggregated_dim, self.feat_aggregated_dim),
nn.ReLU(),
nn.Linear(self.feat_aggregated_dim, 2)
)
self.relation_domain_classifier_all += [relation_domain_classifier]
## classifier for action prediction task
self.pred_classifier_video = nn.Linear(self.feat_aggregated_dim, self.num_class)
## classifier for prediction domains
self.fc_feature_domain_latent = nn.Linear(self.f_dim, self.f_dim)
self.fc_classifier_doamin_latent = nn.Linear(self.f_dim, 2)
## attention option
if self.use_attn == 'general':
self.attn_layer = nn.Sequential(
nn.Linear(self.feat_aggregated_dim, self.feat_aggregated_dim),
nn.Tanh(),
nn.Linear(self.feat_aggregated_dim, 1)
)
def domain_classifier_frame(self, feat, beta):
feat_fc_domain_frame = GradReverse.apply(feat, beta)
feat_fc_domain_frame = self.fc_feature_domain_frame(feat_fc_domain_frame)
feat_fc_domain_frame = self.relu(feat_fc_domain_frame)
pred_fc_domain_frame = self.fc_classifier_domain_frame(feat_fc_domain_frame)
return pred_fc_domain_frame
def domain_classifier_video(self, feat_video, beta):
feat_fc_domain_video = GradReverse.apply(feat_video, beta)
feat_fc_domain_video = self.fc_feature_domain_video(feat_fc_domain_video)
feat_fc_domain_video = self.relu(feat_fc_domain_video)
pred_fc_domain_video = self.fc_classifier_domain_video(feat_fc_domain_video)
return pred_fc_domain_video
def domain_classifier_latent(self, f):
feat_fc_domain_latent = self.fc_feature_domain_latent(f)
feat_fc_domain_latent = self.relu(feat_fc_domain_latent)
pred_fc_domain_latent = self.fc_classifier_doamin_latent(feat_fc_domain_latent)
return pred_fc_domain_latent
def domain_classifier_relation(self, feat_relation, beta):
pred_fc_domain_relation_video = None
for i in range(len(self.relation_domain_classifier_all)):
feat_relation_single = feat_relation[:,i,:].squeeze(1) # 128x1x256 --> 128x256
feat_fc_domain_relation_single = GradReverse.apply(feat_relation_single, beta) # the same beta for all relations (for now)
pred_fc_domain_relation_single = self.relation_domain_classifier_all[i](feat_fc_domain_relation_single)
if pred_fc_domain_relation_video is None:
pred_fc_domain_relation_video = pred_fc_domain_relation_single.view(-1,1,2)
else:
pred_fc_domain_relation_video = torch.cat((pred_fc_domain_relation_video, pred_fc_domain_relation_single.view(-1,1,2)), 1)
pred_fc_domain_relation_video = pred_fc_domain_relation_video.view(-1,2)
return pred_fc_domain_relation_video
def get_trans_attn(self, pred_domain):
softmax = nn.Softmax(dim=1)
logsoftmax = nn.LogSoftmax(dim=1)
entropy = torch.sum(-softmax(pred_domain) * logsoftmax(pred_domain), 1)
weights = 1 - entropy
return weights
def get_general_attn(self, feat):
num_segments = feat.size()[1]
feat = feat.view(-1, feat.size()[-1]) # reshape features: 128x4x256 --> (128x4)x256
weights = self.attn_layer(feat) # e.g. (128x4)x1
weights = weights.view(-1, num_segments, weights.size()[-1]) # reshape attention weights: (128x4)x1 --> 128x4x1
weights = F.softmax(weights, dim=1) # softmax over segments ==> 128x4x1
return weights
def get_attn_feat_relation(self, feat_fc, pred_domain, num_segments):
if self.use_attn == 'TransAttn':
weights_attn = self.get_trans_attn(pred_domain)
elif self.use_attn == 'general':
weights_attn = self.get_general_attn(feat_fc)
weights_attn = weights_attn.view(-1, num_segments-1, 1).repeat(1,1,feat_fc.size()[-1]) # reshape & repeat weights (e.g. 16 x 4 x 256)
feat_fc_attn = (weights_attn+1) * feat_fc
return feat_fc_attn, weights_attn[:,:,0]
def encode_and_sample_post(self, x):
if isinstance(x, list):
conv_x = self.encoder_frame(x[0])
else:
conv_x = self.encoder_frame(x)
# pass the bidirectional lstm
lstm_out, _ = self.z_lstm(conv_x)
# get f:
backward = lstm_out[:, 0, self.hidden_dim:2 * self.hidden_dim]
frontal = lstm_out[:, self.frames - 1, 0:self.hidden_dim]
lstm_out_f = torch.cat((frontal, backward), dim=1)
f_mean = self.f_mean(lstm_out_f)
f_logvar = self.f_logvar(lstm_out_f)
f_post = self.reparameterize(f_mean, f_logvar, random_sampling=False)
# pass to one direction rnn
features, _ = self.z_rnn(lstm_out)
z_mean = self.z_mean(features)
z_logvar = self.z_logvar(features)
z_post = self.reparameterize(z_mean, z_logvar, random_sampling=False)
if isinstance(x, list):
f_mean_list = [f_mean]
f_post_list = [f_post]
for t in range(1,3,1):
conv_x = self.encoder_frame(x[t])
lstm_out, _ = self.z_lstm(conv_x)
# get f:
backward = lstm_out[:, 0, self.hidden_dim:2 * self.hidden_dim]
frontal = lstm_out[:, self.frames - 1, 0:self.hidden_dim]
lstm_out_f = torch.cat((frontal, backward), dim=1)
f_mean = self.f_mean(lstm_out_f)
f_logvar = self.f_logvar(lstm_out_f)
f_post = self.reparameterize(f_mean, f_logvar, random_sampling=False)
f_mean_list.append(f_mean)
f_post_list.append(f_post)
f_mean = f_mean_list
f_post = f_post_list
# f_mean and f_post are list if triple else not
return f_mean, f_logvar, f_post, z_mean, z_logvar, z_post
def decoder_frame(self,zf):
if self.input_type == 'image':
recon_x = self.decoder(zf)
return recon_x
if self.input_type == 'feature':
zf = self.z_2_out(zf) # batch,frames,(z_dim+f_dim) -> batch,frames,fc_output_dim
zf = self.relu(zf)
if self.add_fc > 2:
zf = self.dec_fc_layer3(zf)
if self.use_bn == 'shared':
zf = self.bn_dec_layer3(zf)
elif self.use_bn == 'separated':
zf_src = self.bn_S_dec_layer3(zf[:self.batchsize,:,:])
zf_tar = self.bn_T_dec_layer3(zf[self.batchsize:,:,:])
zf = torch.cat([zf_src,zf_tar],axis=0)
zf = self.relu(zf)
if self.add_fc > 1:
zf = self.dec_fc_layer2(zf)
if self.use_bn == 'shared':
zf = self.bn_dec_layer2(zf)
elif self.use_bn == 'separated':
zf_src = self.bn_S_dec_layer2(zf[:self.batchsize,:,:])
zf_tar = self.bn_T_dec_layer2(zf[self.batchsize:,:,:])
zf = torch.cat([zf_src,zf_tar],axis=0)
zf = self.relu(zf)
zf = self.dec_fc_layer1(zf)
if self.use_bn == 'shared':
zf = self.bn_dec_layer2(zf)
elif self.use_bn == 'separated':
zf_src = self.bn_S_dec_layer2(zf[:self.batchsize,:,:])
zf_tar = self.bn_T_dec_layer2(zf[self.batchsize:,:,:])
zf = torch.cat([zf_src,zf_tar],axis=0)
recon_x = self.relu(zf)
return recon_x
def encoder_frame(self, x):
if self.input_type == 'image':
# input x is list of length Frames [batchsize, channels, size, size]
# convert it to [batchsize, frames, channels, size, size]
# [batch_size, frames, channels, size, size] to [batch_size * frames, channels, size, size]
x_shape = x.shape
x = x.view(-1, x_shape[-3], x_shape[-2], x_shape[-1])
x_embed = self.encoder(x)[0]
# to [batch_size,frames,embed_dim]
return x_embed.view(x_shape[0], x_shape[1], -1)
if self.input_type == 'feature':
# input is [batchsize, framew, input_dim]
x_embed = self.enc_fc_layer1(x)
## use batchnormalization or not (if yes whether the source and target share the same batchnormalization)
if self.use_bn == 'shared':
x_embed = self.bn_enc_layer1(x_embed)
elif self.use_bn == 'separated':
x_embed_src = self.bn_S_enc_layer1(x_embed[:self.batchsize,:,:])
x_embed_tar = self.bn_T_enc_layer1(x_embed[self.batchsize:,:,:])
x_embed = torch.cat([x_embed_src,x_embed_tar],axis=0)
x_embed = self.relu(x_embed)
if self.add_fc > 1:
x_embed = self.enc_fc_layer2(x_embed)
if self.use_bn == 'shared':
x_embed = self.bn_enc_layer2(x_embed)
elif self.use_bn == 'separated':
x_embed_src = self.bn_S_enc_layer2(x_embed[:self.batchsize,:,:])
x_embed_tar = self.bn_T_enc_layer2(x_embed[self.batchsize:,:,:])
x_embed = torch.cat([x_embed_src,x_embed_tar],axis=0)
x_embed = self.relu(x_embed)
if self.add_fc > 2:
x_embed = self.enc_fc_layer3(x_embed)
if self.use_bn == 'shared':
x_embed = self.bn_enc_layer3(x_embed)
elif self.use_bn == 'separated':
x_embed_src = self.bn_S_enc_layer3(x_embed[:self.batchsize,:,:])
x_embed_tar = self.bn_T_enc_layer3(x_embed[self.batchsize:,:,:])
x_embed = torch.cat([x_embed_src,x_embed_tar],axis=0)
x_embed = self.relu(x_embed)
## [batchsize, frame, output_dim]
return x_embed
def reparameterize(self, mean, logvar, random_sampling=True):
# Reparametrization occurs only if random sampling is set to true, otherwise mean is returned
if random_sampling is True:
eps = torch.randn_like(logvar)
std = torch.exp(0.5 * logvar)
z = mean + eps * std
return z
else:
return mean
def sample_z_prior_train(self, z_post, random_sampling=True):
z_out = None # This will ultimately store all z_s in the format [batch_size, frames, z_dim]
z_means = None
z_logvars = None
batch_size = z_post.shape[0]
z_t = torch.zeros(batch_size, self.z_dim).cpu()
h_t_ly1 = torch.zeros(batch_size, self.hidden_dim).cpu()
c_t_ly1 = torch.zeros(batch_size, self.hidden_dim).cpu()
h_t_ly2 = torch.zeros(batch_size, self.hidden_dim).cpu()
c_t_ly2 = torch.zeros(batch_size, self.hidden_dim).cpu()
for i in range(self.frames):
# two layer LSTM and two one-layer FC
h_t_ly1, c_t_ly1 = self.z_prior_lstm_ly1(z_t, (h_t_ly1, c_t_ly1))
h_t_ly2, c_t_ly2 = self.z_prior_lstm_ly2(h_t_ly1, (h_t_ly2, c_t_ly2))
z_mean_t = self.z_prior_mean(h_t_ly2)
z_logvar_t = self.z_prior_logvar(h_t_ly2)
z_prior = self.reparameterize(z_mean_t, z_logvar_t, random_sampling)
if z_out is None:
# If z_out is none it means z_t is z_1, hence store it in the format [batch_size, 1, z_dim]
z_out = z_prior.unsqueeze(1)
z_means = z_mean_t.unsqueeze(1)
z_logvars = z_logvar_t.unsqueeze(1)
else:
# If z_out is not none, z_t is not the initial z and hence append it to the previous z_ts collected in z_out
z_out = torch.cat((z_out, z_prior.unsqueeze(1)), dim=1)
z_means = torch.cat((z_means, z_mean_t.unsqueeze(1)), dim=1)
z_logvars = torch.cat((z_logvars, z_logvar_t.unsqueeze(1)), dim=1)
z_t = z_post[:,i,:]
return z_means, z_logvars, z_out
# If random sampling is true, reparametrization occurs else z_t is just set to the mean
def sample_z(self, batch_size, random_sampling=True):
z_out = None # This will ultimately store all z_s in the format [batch_size, frames, z_dim]
z_means = None
z_logvars = None
# All states are initially set to 0, especially z_0 = 0
z_t = torch.zeros(batch_size, self.z_dim).cpu()
# z_mean_t = torch.zeros(batch_size, self.z_dim)
# z_logvar_t = torch.zeros(batch_size, self.z_dim)
h_t_ly1 = torch.zeros(batch_size, self.hidden_dim).cpu()
c_t_ly1 = torch.zeros(batch_size, self.hidden_dim).cpu()
h_t_ly2 = torch.zeros(batch_size, self.hidden_dim).cpu()
c_t_ly2 = torch.zeros(batch_size, self.hidden_dim).cpu()
for _ in range(self.frames):
# h_t, c_t = self.z_prior_lstm(z_t, (h_t, c_t))
# two layer LSTM and two one-layer FC
h_t_ly1, c_t_ly1 = self.z_prior_lstm_ly1(z_t, (h_t_ly1, c_t_ly1))
h_t_ly2, c_t_ly2 = self.z_prior_lstm_ly2(h_t_ly1, (h_t_ly2, c_t_ly2))
z_mean_t = self.z_prior_mean(h_t_ly2)
z_logvar_t = self.z_prior_logvar(h_t_ly2)
z_t = self.reparameterize(z_mean_t, z_logvar_t, random_sampling)
if z_out is None:
# If z_out is none it means z_t is z_1, hence store it in the format [batch_size, 1, z_dim]
z_out = z_t.unsqueeze(1)
z_means = z_mean_t.unsqueeze(1)
z_logvars = z_logvar_t.unsqueeze(1)
else:
# If z_out is not none, z_t is not the initial z and hence append it to the previous z_ts collected in z_out
z_out = torch.cat((z_out, z_t.unsqueeze(1)), dim=1)
z_means = torch.cat((z_means, z_mean_t.unsqueeze(1)), dim=1)
z_logvars = torch.cat((z_logvars, z_logvar_t.unsqueeze(1)), dim=1)
return z_means, z_logvars, z_out
def forward(self, x, beta):
# beta [beta_relation, beta_video, beta_frame]
f_mean, f_logvar, f_post, z_mean_post, z_logvar_post, z_post = self.encode_and_sample_post(x)
if self.prior_sample == 'random':
z_mean_prior, z_logvar_prior, z_prior = self.sample_z(z_post.size(0),random_sampling=False)
elif self.prior_sample == 'post':
z_mean_prior, z_logvar_prior, z_prior = self.sample_z_prior_train(z_post, random_sampling=False)
if isinstance(f_post, list):
f_expand = f_post[0].unsqueeze(1).expand(-1, self.frames, self.f_dim)
else:
f_expand = f_post.unsqueeze(1).expand(-1, self.frames, self.f_dim)
zf = torch.cat((z_post, f_expand), dim=2) # batch,frames,(z_dim+f_dim)
## reconcstruct x
recon_x = self.decoder_frame(zf)
## For constraints on z_post [batch,frame,z_dim] and f_post [batch,f_dim]
pred_domain_all = [] # list save domain predictions (1) z_post (frame level) (2) each z_post_relation (if trn) (3) z_post (video level) (4)f_post
#1. adversarial on z_post (frame level)
z_post_feat = z_post.view(-1, z_post.size()[-1]) # e.g. 32 x 5 x 2048 --> 160 x 2048
z_post_feat = self.dropout_f(z_post_feat)
pred_fc_domain_frame = self.domain_classifier_frame(z_post_feat, beta[2])
pred_fc_domain_frame = pred_fc_domain_frame.view((z_post.size(0), self.frames) + pred_fc_domain_frame.size()[-1:])
pred_domain_all.append(pred_fc_domain_frame)
#2 adversarial on z_post (video level, relation level if trn is used)
if self.frame_aggregation == 'rnn':
self.bilstm.flatten_parameters()
z_post_video_feat, _ = self.bilstm(z_post)
backward = z_post_video_feat[:, 0, self.z_dim:2 * self.z_dim]
frontal = z_post_video_feat[:, self.frames - 1, 0:self.z_dim]
z_post_video_feat = torch.cat((frontal, backward), dim=1)
pred_fc_domain_relation = []
pred_domain_all.append(pred_fc_domain_relation)
elif self.frame_aggregation == 'trn':
z_post_video_relation = self.TRN(z_post) ## [batch, frame-1, self.feat_aggregated_dim]
# adversarial branch for each relation
pred_fc_domain_relation = self.domain_classifier_relation(z_post_video_relation, beta[0])
pred_domain_all.append(pred_fc_domain_relation.view((z_post.size(0), z_post_video_relation.size()[1]) + pred_fc_domain_relation.size()[-1:]))
# transferable attention
if self.use_attn != 'none': # get the attention weighting
z_post_video_relation_attn, _ = self.get_attn_feat_relation(z_post_video_relation, pred_fc_domain_relation, self.frames)
# sum up relation features (ignore 1-relation)
z_post_video_feat = torch.sum(z_post_video_relation_attn, 1)
z_post_video_feat = self.dropout_v(z_post_video_feat)
pred_fc_domain_video = self.domain_classifier_video(z_post_video_feat, beta[1])
pred_fc_domain_video = pred_fc_domain_video.view((z_post.size(0),) + pred_fc_domain_video.size()[-1:])
pred_domain_all.append(pred_fc_domain_video)
#3. video prediction
pred_video_class = self.pred_classifier_video(z_post_video_feat)
#4. domain prediction on f
if isinstance(f_post, list):
pred_fc_domain_latent = self.domain_classifier_latent(f_post[0])
else:
pred_fc_domain_latent = self.domain_classifier_latent(f_post)
pred_domain_all.append(pred_fc_domain_latent)
return f_mean, f_logvar, f_post, z_mean_post, z_logvar_post, z_post, z_mean_prior, z_logvar_prior, z_prior, recon_x, pred_domain_all, pred_video_class
def name2seq(file_name):
images = []
for frame in range(8):
frame_name = '%d' % (frame)
image_filename = file_name + frame_name + '.png'
image = imageio.imread(image_filename)
images.append(image[:, :, :3])
images = np.asarray(images, dtype='f') / 256.0
images = images.transpose((0, 3, 1, 2))
images = torch.Tensor(images).unsqueeze(dim=0)
return images
def display_gif(file_name, save_name):
images = []
for frame in range(8):
frame_name = '%d' % (frame)
image_filename = file_name + frame_name + '.png'
images.append(imageio.imread(image_filename))
gif_filename = 'avatar_source.gif'
return imageio.mimsave(gif_filename, images)
def display_gif_pad(file_name, save_name):
images = []
for frame in range(8):
frame_name = '%d' % (frame)
image_filename = file_name + frame_name + '.png'
image = imageio.imread(image_filename)
image = image[:, :, :3]
image_pad = cv2.copyMakeBorder(image, 0, 0, 125, 125, cv2.BORDER_CONSTANT, value=0)
images.append(image_pad)
return imageio.mimsave(save_name, images)
def display_image(file_name):
image_filename = file_name + '0' + '.png'
print(image_filename)
image = imageio.imread(image_filename)
imageio.imwrite('image.png', image)
def concat(file_name):
images = []
for frame in range(8):
frame_name = '%d' % (frame)
image_filename = file_name + frame_name + '.png'
image = imageio.imread(image_filename)
images.append(image)
gif_filename = 'demo.gif'
return imageio.mimsave(gif_filename, images)
def MyPlot(frame_id, src_orig, tar_orig, src_recon, tar_recon, src_Zt, tar_Zt, src_Zf_tar_Zt, tar_Zf_src_Zt):
fig, axs = plt.subplots(2, 4, sharex=True, sharey=True, figsize=(10, 5))
axs[0, 0].imshow(src_orig)
axs[0, 0].set_title("\n\n\nOriginal\nInput")
axs[0, 0].axis('off')
axs[1, 0].imshow(tar_orig)
axs[1, 0].axis('off')
axs[0, 1].imshow(src_recon)
axs[0, 1].set_title("\n\n\nReconstructed\nOutput")
axs[0, 1].axis('off')
axs[1, 1].imshow(tar_recon)
axs[1, 1].axis('off')
axs[0, 2].imshow(src_Zt)
axs[0, 2].set_title("\n\n\nOutput\nw/ Zt")
axs[0, 2].axis('off')
axs[1, 2].imshow(tar_Zt)
axs[1, 2].axis('off')
axs[0, 3].imshow(tar_Zf_src_Zt)
axs[0, 3].set_title("\n\n\nExchange\nZt and Zf")
axs[0, 3].axis('off')
axs[1, 3].imshow(src_Zf_tar_Zt)
axs[1, 3].axis('off')
plt.subplots_adjust(hspace=0.06, wspace=0.05)
save_name = 'MyPlot_{}.png'.format(frame_id)
plt.savefig(save_name, dpi=200, format='png', bbox_inches='tight', pad_inches=0.0)
def run(domain_source, action_source, hair_source, top_source, bottom_source, domain_target, action_target, hair_target, top_target, bottom_target):
# == Source Avatar ==
# body
body_source = '0'
# hair
if hair_source == "green": hair_source = '0'
elif hair_source == "yellow": hair_source = '2'
elif hair_source == "rose": hair_source = '4'
elif hair_source == "red": hair_source = '7'
elif hair_source == "wine": hair_source = '8'
# top
if top_source == "brown": top_source = '0'
elif top_source == "blue": top_source = '1'
elif top_source == "white": top_source = '2'
# bottom
if bottom_source == "white": bottom_source = '0'
elif bottom_source == "golden": bottom_source = '1'
elif bottom_source == "red": bottom_source = '2'
elif bottom_source == "silver": bottom_source = '3'
file_name_source = './Sprite/frames/domain_1/' + action_source + '/'
file_name_source = file_name_source + 'front' + '_' + str(body_source) + str(bottom_source) + str(top_source) + str(hair_source) + '_'
# == Target Avatar ==
# body
body_target = '1'
# hair
if hair_target == "violet": hair_target = '1'
elif hair_target == "silver": hair_target = '3'
elif hair_target == "purple": hair_target = '5'
elif hair_target == "grey": hair_target = '6'
elif hair_target == "golden": hair_target = '9'
# top
if top_target == "grey": top_target = '3'
elif top_target == "khaki": top_target = '4'
elif top_target == "linen": top_target = '5'
elif top_target == "ocre": top_target = '6'
# bottom
if bottom_target == "denim": bottom_target = '4'
elif bottom_target == "olive": bottom_target = '5'
elif bottom_target == "brown": bottom_target = '6'
file_name_target = './Sprite/frames/domain_2/' + action_target + '/'
file_name_target = file_name_target + 'front' + '_' + str(body_target) + str(bottom_target) + str(top_target) + str(hair_target) + '_'
# == Load Input ==
images_source = name2seq(file_name_source)
images_target = name2seq(file_name_target)
x = torch.cat((images_source, images_target), dim=0)
# == Load Model ==
model = TransferVAE_Video(opt)
model.load_state_dict(torch.load('TransferVAE.pth.tar', map_location=torch.device('cpu'))['state_dict'])
model.eval()
# == Forward ==
with torch.no_grad():
f_mean, f_logvar, f_post, z_post_mean, z_post_logvar, z_post, z_prior_mean, z_prior_logvar, z_prior, recon_x, pred_domain_all, pred_video_class = model(x, [0]*3)
src_orig_sample = x[0, :, :, :, :]
src_recon_sample = recon_x[0, :, :, :, :]
src_f_post = f_post[0, :].unsqueeze(0)
src_z_post = z_post[0, :, :].unsqueeze(0)
tar_orig_sample = x[1, :, :, :, :]
tar_recon_sample = recon_x[1, :, :, :, :]
tar_f_post = f_post[1, :].unsqueeze(0)
tar_z_post = z_post[1, :, :].unsqueeze(0)
# == Visualize ==
for frame in range(8):
# original frame
src_orig = src_orig_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
tar_orig = tar_orig_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
# reconstructed frame
src_recon = src_recon_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
tar_recon = tar_recon_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
# Zt
f_expand_src = 0 * src_f_post.unsqueeze(1).expand(-1, 8, opt.f_dim)
zf_src = torch.cat((src_z_post, f_expand_src), dim=2)
recon_x_src = model.decoder_frame(zf_src)
src_Zt = recon_x_src.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
f_expand_tar = 0 * tar_f_post.unsqueeze(1).expand(-1, 8, opt.f_dim)
zf_tar = torch.cat((tar_z_post, f_expand_tar), dim=2) # batch,frames,(z_dim+f_dim)
recon_x_tar = model.decoder_frame(zf_tar)
tar_Zt = recon_x_tar.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
# Zf_Zt
f_expand_src = src_f_post.unsqueeze(1).expand(-1, 8, opt.f_dim)
zf_srcZf_tarZt = torch.cat((tar_z_post, f_expand_src), dim=2) # batch,frames,(z_dim+f_dim)
recon_x_srcZf_tarZt = model.decoder_frame(zf_srcZf_tarZt)
src_Zf_tar_Zt = recon_x_srcZf_tarZt.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
f_expand_tar = tar_f_post.unsqueeze(1).expand(-1, 8, opt.f_dim)
zf_tarZf_srcZt = torch.cat((src_z_post, f_expand_tar), dim=2) # batch,frames,(z_dim+f_dim)
recon_x_tarZf_srcZt = model.decoder_frame(zf_tarZf_srcZt)
tar_Zf_src_Zt = recon_x_tarZf_srcZt.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
MyPlot(frame, src_orig, tar_orig, src_recon, tar_recon, src_Zt, tar_Zt, src_Zf_tar_Zt, tar_Zf_src_Zt)
a = concat('MyPlot_')
return 'demo.gif'
gr.Interface(
run,
inputs=[
gr.Textbox(value="Source Avatar - Human", interactive=False),
gr.Radio(choices=["slash", "spellcard", "walk"], value="slash"),
gr.Radio(choices=["green", "yellow", "rose", "red", "wine"], value="green"),
gr.Radio(choices=["brown", "blue", "white"], value="brown"),
gr.Radio(choices=["white", "golden", "red", "silver"], value="white"),
gr.Textbox(value="Target Avatar - Alien", interactive=False),
gr.Radio(choices=["slash", "spellcard", "walk"], value="walk"),
gr.Radio(choices=["violet", "silver", "purple", "grey", "golden"], value="golden"),
gr.Radio(choices=["grey", "khaki", "linen", "ocre"], value="ocre"),
gr.Radio(choices=["denim", "olive", "brown"], value="brown"),
],
outputs=[
gr.components.Image(type="file", label="Domain Disentanglement"),
],
live=True,
title="TransferVAE for Unsupervised Video Domain Adaptation",
).launch()