Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -38,10 +38,8 @@ def get_weather(lat: float, lng: float) -> dict[str, str]: | |
| 38 | 
             
                else: # Southern locations
         | 
| 39 | 
             
                    return {"temperature": "30°C", "description": "Very Sunny"}
         | 
| 40 |  | 
| 41 | 
            -
             | 
| 42 | 
            -
             | 
| 43 | 
            -
            # Or keep it simple, Gradio infers based on yields
         | 
| 44 | 
            -
            async def stream_from_agent(message: str, history: List[List[str]]) -> AsyncGenerator[str, None]:
         | 
| 45 | 
             
                """Processes message through LangChain agent, yielding intermediate steps as strings."""
         | 
| 46 |  | 
| 47 | 
             
                # Convert Gradio history to LangChain messages
         | 
| @@ -59,7 +57,6 @@ async def stream_from_agent(message: str, history: List[List[str]]) -> AsyncGene | |
| 59 |  | 
| 60 | 
             
                lc_messages.append(HumanMessage(content=message))
         | 
| 61 |  | 
| 62 | 
            -
                # Initialize the agent (consider initializing outside the function if stateful across calls)
         | 
| 63 | 
             
                llm = ChatOpenAI(temperature=0, model="gpt-4")
         | 
| 64 | 
             
                memory = MemorySaver() # Be mindful of memory state if agent is re-initialized every time
         | 
| 65 | 
             
                tools = [get_lat_lng, get_weather]
         | 
| @@ -69,7 +66,7 @@ async def stream_from_agent(message: str, history: List[List[str]]) -> AsyncGene | |
| 69 | 
             
                # Using a fixed one like "abc123" means all users share the same memory if server restarts aren't frequent
         | 
| 70 | 
             
                thread_id = "user_session_" + str(os.urandom(4).hex()) # Example: generate unique ID
         | 
| 71 |  | 
| 72 | 
            -
                full_response = "" | 
| 73 |  | 
| 74 | 
             
                async for chunk in agent_executor.astream_events(
         | 
| 75 | 
             
                    {"messages": lc_messages},
         | 
| @@ -80,29 +77,21 @@ async def stream_from_agent(message: str, history: List[List[str]]) -> AsyncGene | |
| 80 | 
             
                    data = chunk["data"]
         | 
| 81 |  | 
| 82 | 
             
                    if event == "on_chat_model_stream":
         | 
| 83 | 
            -
                        # Stream content from the LLM (final answer parts)
         | 
| 84 | 
             
                        content = data["chunk"].content
         | 
| 85 | 
             
                        if content:
         | 
| 86 | 
             
                            full_response += content
         | 
| 87 | 
            -
                            yield full_response  | 
| 88 |  | 
| 89 | 
             
                    elif event == "on_tool_start":
         | 
| 90 | 
            -
                         | 
| 91 | 
            -
                        tool_input_str = str(data.get('input', '')) # Get tool input safely
         | 
| 92 | 
             
                        yield f"🛠️ Using tool: **{data['name']}** with input: `{tool_input_str}`"
         | 
| 93 |  | 
| 94 | 
             
                    elif event == "on_tool_end":
         | 
| 95 | 
            -
                          | 
| 96 | 
            -
                         tool_output_str = str(data.get('output', '')) # Get tool output safely
         | 
| 97 | 
            -
                         # Find the corresponding start message to potentially update, or just yield new message
         | 
| 98 | 
            -
                         # For simplicity, just yield the result as a new message line
         | 
| 99 | 
             
                         yield f"Tool **{data['name']}** finished.\nResult: `{tool_output_str}`"
         | 
| 100 | 
            -
                         # Yield the accumulated response again after tool use in case LLM continues
         | 
| 101 | 
             
                         if full_response:
         | 
| 102 | 
             
                             yield full_response
         | 
| 103 |  | 
| 104 | 
            -
                # Ensure the final accumulated response is yielded if not already done by the last LLM chunk
         | 
| 105 | 
            -
                # (stream might end on tool end sometimes)
         | 
| 106 | 
             
                if full_response and (not chunk or chunk["event"] != "on_chat_model_stream"):
         | 
| 107 | 
             
                     yield full_response
         | 
| 108 |  | 
| @@ -110,16 +99,10 @@ async def stream_from_agent(message: str, history: List[List[str]]) -> AsyncGene | |
| 110 | 
             
            # --- Gradio Interface (mostly unchanged) ---
         | 
| 111 | 
             
            demo = gr.ChatInterface(
         | 
| 112 | 
             
                fn=stream_from_agent,
         | 
| 113 | 
            -
                 | 
| 114 | 
            -
                title=" | 
| 115 | 
             
                description="Ask about the weather anywhere! Watch as I gather the information step by step.",
         | 
| 116 | 
            -
                 | 
| 117 | 
            -
                    ["What's the weather like in Tokyo?"],
         | 
| 118 | 
            -
                    ["Is it sunny in Paris right now?"],
         | 
| 119 | 
            -
                    ["Should I bring an umbrella in New York today?"]
         | 
| 120 | 
            -
                ],
         | 
| 121 | 
            -
                # Example icons removed for simplicity, ensure they are accessible if added back
         | 
| 122 | 
            -
                cache_examples=False, # Turn off caching initially to ensure it's not the issue
         | 
| 123 | 
             
                save_history=True,
         | 
| 124 | 
             
                editable=True,
         | 
| 125 | 
             
            )
         | 
| @@ -127,22 +110,9 @@ demo = gr.ChatInterface( | |
| 127 | 
             
            if __name__ == "__main__":
         | 
| 128 | 
             
                # Load environment variables
         | 
| 129 | 
             
                try:
         | 
| 130 | 
            -
                    from dotenv import load_dotenv
         | 
| 131 | 
            -
                    print("Attempting to load .env file...")
         | 
| 132 | 
            -
                    loaded = load_dotenv()
         | 
| 133 | 
            -
                    if loaded:
         | 
| 134 | 
            -
                        print(".env file loaded successfully.")
         | 
| 135 | 
            -
                    else:
         | 
| 136 | 
            -
                        print(".env file not found or empty.")
         | 
| 137 | 
            -
                    # Check if the key is loaded
         | 
| 138 | 
             
                    openai_api_key = os.getenv("OPENAI_API_KEY")
         | 
| 139 | 
             
                    if openai_api_key:
         | 
| 140 | 
             
                        print("OPENAI_API_KEY found.")
         | 
| 141 | 
             
                    else:
         | 
| 142 | 
             
                        print("Warning: OPENAI_API_KEY not found in environment variables.")
         | 
| 143 | 
            -
                except ImportError:
         | 
| 144 | 
            -
                    print("dotenv not installed, skipping .env load.")
         | 
| 145 | 
            -
                    pass
         | 
| 146 | 
            -
             | 
| 147 | 
            -
                # Add server_name="0.0.0.0" if running in Docker or need external access
         | 
| 148 | 
             
                demo.launch(debug=True, server_name="0.0.0.0")
         | 
|  | |
| 38 | 
             
                else: # Southern locations
         | 
| 39 | 
             
                    return {"temperature": "30°C", "description": "Very Sunny"}
         | 
| 40 |  | 
| 41 | 
            +
             | 
| 42 | 
            +
            async def Answer_from_agent(message: str, history: List[List[str]]) -> AsyncGenerator[str, None]:
         | 
|  | |
|  | |
| 43 | 
             
                """Processes message through LangChain agent, yielding intermediate steps as strings."""
         | 
| 44 |  | 
| 45 | 
             
                # Convert Gradio history to LangChain messages
         | 
|  | |
| 57 |  | 
| 58 | 
             
                lc_messages.append(HumanMessage(content=message))
         | 
| 59 |  | 
|  | |
| 60 | 
             
                llm = ChatOpenAI(temperature=0, model="gpt-4")
         | 
| 61 | 
             
                memory = MemorySaver() # Be mindful of memory state if agent is re-initialized every time
         | 
| 62 | 
             
                tools = [get_lat_lng, get_weather]
         | 
|  | |
| 66 | 
             
                # Using a fixed one like "abc123" means all users share the same memory if server restarts aren't frequent
         | 
| 67 | 
             
                thread_id = "user_session_" + str(os.urandom(4).hex()) # Example: generate unique ID
         | 
| 68 |  | 
| 69 | 
            +
                full_response = ""
         | 
| 70 |  | 
| 71 | 
             
                async for chunk in agent_executor.astream_events(
         | 
| 72 | 
             
                    {"messages": lc_messages},
         | 
|  | |
| 77 | 
             
                    data = chunk["data"]
         | 
| 78 |  | 
| 79 | 
             
                    if event == "on_chat_model_stream":
         | 
|  | |
| 80 | 
             
                        content = data["chunk"].content
         | 
| 81 | 
             
                        if content:
         | 
| 82 | 
             
                            full_response += content
         | 
| 83 | 
            +
                            yield full_response 
         | 
| 84 |  | 
| 85 | 
             
                    elif event == "on_tool_start":
         | 
| 86 | 
            +
                        tool_input_str = str(data.get('input', ''))
         | 
|  | |
| 87 | 
             
                        yield f"🛠️ Using tool: **{data['name']}** with input: `{tool_input_str}`"
         | 
| 88 |  | 
| 89 | 
             
                    elif event == "on_tool_end":
         | 
| 90 | 
            +
                         tool_output_str = str(data.get('output', '')) 
         | 
|  | |
|  | |
|  | |
| 91 | 
             
                         yield f"Tool **{data['name']}** finished.\nResult: `{tool_output_str}`"
         | 
|  | |
| 92 | 
             
                         if full_response:
         | 
| 93 | 
             
                             yield full_response
         | 
| 94 |  | 
|  | |
|  | |
| 95 | 
             
                if full_response and (not chunk or chunk["event"] != "on_chat_model_stream"):
         | 
| 96 | 
             
                     yield full_response
         | 
| 97 |  | 
|  | |
| 99 | 
             
            # --- Gradio Interface (mostly unchanged) ---
         | 
| 100 | 
             
            demo = gr.ChatInterface(
         | 
| 101 | 
             
                fn=stream_from_agent,
         | 
| 102 | 
            +
                type="messages",
         | 
| 103 | 
            +
                title="🤖 AGent template",
         | 
| 104 | 
             
                description="Ask about the weather anywhere! Watch as I gather the information step by step.",
         | 
| 105 | 
            +
                cache_examples=False, 
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 106 | 
             
                save_history=True,
         | 
| 107 | 
             
                editable=True,
         | 
| 108 | 
             
            )
         | 
|  | |
| 110 | 
             
            if __name__ == "__main__":
         | 
| 111 | 
             
                # Load environment variables
         | 
| 112 | 
             
                try:
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 113 | 
             
                    openai_api_key = os.getenv("OPENAI_API_KEY")
         | 
| 114 | 
             
                    if openai_api_key:
         | 
| 115 | 
             
                        print("OPENAI_API_KEY found.")
         | 
| 116 | 
             
                    else:
         | 
| 117 | 
             
                        print("Warning: OPENAI_API_KEY not found in environment variables.")
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 118 | 
             
                demo.launch(debug=True, server_name="0.0.0.0")
         | 
 
			
