Spaces:
Sleeping
Sleeping
from fastapi import APIRouter | |
from datetime import datetime | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score | |
import random | |
from .utils.evaluation import TextEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
from .utils.predict import predict | |
#packages needed for inference | |
import pickle | |
import torch | |
import os | |
import nltk | |
from nltk.corpus import stopwords | |
import spacy | |
nltk.download('stopwords') | |
# Get the list of English stop words from NLTK | |
nltk_stop_words = stopwords.words('english') | |
# Load the spaCy model for English | |
nlp = spacy.load("en_core_web_sm") | |
def process_text(text): | |
""" | |
Process text by: | |
1. Lowercasing | |
2. Removing punctuation and non-alphanumeric characters | |
3. Removing stop words | |
4. Lemmatization | |
""" | |
# Step 1: Tokenization & Processing with spaCy | |
doc = nlp(text.lower()) # Process text with spaCy | |
# Step 2: Filter out stop words, non-alphanumeric characters, punctuation, and apply lemmatization | |
processed_tokens = [ | |
re.sub(r'[^a-zA-Z0-9]', '', token.lemma_) # Remove non-alphanumeric characters | |
for token in doc | |
if token.text not in nltk_stop_words and token.text not in string.punctuation | |
] | |
# Optional: Filter out empty strings resulting from the regex replacement | |
processed_tokens = " ".join([word for word in processed_tokens if word]) | |
return processed_tokens | |
router = APIRouter() | |
DESCRIPTION = "TF-IDF + RF" | |
ROUTE = "/text" | |
async def evaluate_text(request: TextEvaluationRequest): | |
""" | |
Evaluate text classification for climate disinformation detection. | |
Current Model: Random Baseline | |
- Makes random predictions from the label space (0-7) | |
- Used as a baseline for comparison | |
""" | |
# Get space info | |
username, space_url = get_space_info() | |
# Define the label mapping | |
LABEL_MAPPING = { | |
"0_not_relevant": 0, | |
"1_not_happening": 1, | |
"2_not_human": 2, | |
"3_not_bad": 3, | |
"4_solutions_harmful_unnecessary": 4, | |
"5_science_unreliable": 5, | |
"6_proponents_biased": 6, | |
"7_fossil_fuels_needed": 7 | |
} | |
# Load and prepare the dataset | |
dataset = load_dataset(request.dataset_name) | |
# Convert string labels to integers | |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) | |
# Split dataset | |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) | |
test_dataset = train_test["test"] | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE CODE HERE | |
# Make random predictions (placeholder for actual model inference) | |
true_labels = test_dataset["label"] | |
current_file_path = os.path.abspath(__file__) | |
current_dir = os.path.dirname(current_file_path) | |
with open(os.path.join(current_dir,"tf-idf_vectorizer.pkl"), "rb") as tfidf_file: | |
tfidf_vectorizer = pickle.load(tfidf_file) | |
# Make predictions using the loaded model | |
predictions = predict(test_dataset,tfidf_vectorizer,os.path.join(current_dir,"random_forest_model.pkl")) | |
predictions = [LABEL_MAPPING[label] for label in predictions] | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE STOPS HERE | |
#-------------------------------------------------------------------------------------------- | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
# Calculate accuracy | |
accuracy = accuracy_score(true_labels, predictions) | |
# Prepare results dictionary | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
return results |