sumesh4C's picture
Update tasks/text.py
ca7ae72 verified
raw
history blame
4.53 kB
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from .utils.predict import predict
#packages needed for inference
import pickle
import torch
import os
import nltk
from nltk.corpus import stopwords
import spacy
nltk.download('stopwords')
# Get the list of English stop words from NLTK
nltk_stop_words = stopwords.words('english')
# Load the spaCy model for English
nlp = spacy.load("en_core_web_sm")
def process_text(text):
"""
Process text by:
1. Lowercasing
2. Removing punctuation and non-alphanumeric characters
3. Removing stop words
4. Lemmatization
"""
# Step 1: Tokenization & Processing with spaCy
doc = nlp(text.lower()) # Process text with spaCy
# Step 2: Filter out stop words, non-alphanumeric characters, punctuation, and apply lemmatization
processed_tokens = [
re.sub(r'[^a-zA-Z0-9]', '', token.lemma_) # Remove non-alphanumeric characters
for token in doc
if token.text not in nltk_stop_words and token.text not in string.punctuation
]
# Optional: Filter out empty strings resulting from the regex replacement
processed_tokens = " ".join([word for word in processed_tokens if word])
return processed_tokens
router = APIRouter()
DESCRIPTION = "TF-IDF + RF"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Make random predictions (placeholder for actual model inference)
true_labels = test_dataset["label"]
current_file_path = os.path.abspath(__file__)
current_dir = os.path.dirname(current_file_path)
with open(os.path.join(current_dir,"tf-idf_vectorizer.pkl"), "rb") as tfidf_file:
tfidf_vectorizer = pickle.load(tfidf_file)
# Make predictions using the loaded model
predictions = predict(test_dataset,tfidf_vectorizer,os.path.join(current_dir,"random_forest_model.pkl"))
predictions = [LABEL_MAPPING[label] for label in predictions]
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results