Spaces:
Running
Running
from transformers import TextGenerationPipeline | |
from transformers.pipelines.text_generation import ReturnType | |
from stopping import get_stopping | |
prompt_type = "human_bot" | |
human = "<human>:" | |
bot = "<bot>:" | |
# human-bot interaction like OIG dataset | |
prompt = """{human} {instruction} | |
{bot}""".format( | |
human=human, | |
instruction="{instruction}", | |
bot=bot, | |
) | |
class H2OTextGenerationPipeline(TextGenerationPipeline): | |
def __init__(self, *args, use_prompter=False, debug=False, chat=False, stream_output=False, | |
sanitize_bot_response=True, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.use_prompter = use_prompter | |
self.prompt_text = None | |
if self.use_prompter: | |
from prompter import Prompter | |
self.prompter = Prompter(prompt_type, debug=debug, chat=chat, stream_output=stream_output) | |
else: | |
self.prompter = None | |
self.sanitize_bot_response = sanitize_bot_response | |
def preprocess(self, prompt_text, prefix="", handle_long_generation=None, **generate_kwargs): | |
prompt_text = prompt.format(instruction=prompt_text) | |
self.prompt_text = prompt_text | |
return super().preprocess(prompt_text, prefix=prefix, handle_long_generation=handle_long_generation, | |
**generate_kwargs) | |
def postprocess(self, model_outputs, return_type=ReturnType.FULL_TEXT, clean_up_tokenization_spaces=True): | |
records = super().postprocess(model_outputs, return_type=return_type, | |
clean_up_tokenization_spaces=clean_up_tokenization_spaces) | |
for rec in records: | |
if self.use_prompter: | |
outputs = rec['generated_text'] | |
outputs = self.prompter.get_response(outputs, prompt=self.prompt_text, | |
sanitize_bot_response=self.sanitize_bot_response) | |
else: | |
outputs = rec['generated_text'].split(bot)[1].strip().split(human)[0].strip() | |
rec['generated_text'] = outputs | |
return records | |
def _forward(self, model_inputs, **generate_kwargs): | |
stopping_criteria = get_stopping(prompt_type, self.tokenizer, self.device, human=human, bot=bot) | |
generate_kwargs['stopping_criteria'] = stopping_criteria | |
return super()._forward(model_inputs, **generate_kwargs) | |