1 / app.py
laolida-w's picture
Update app.py
697a4fe verified
import sys
from eval_dataset import SingleRegionCaptionDataset
from segment_anything import sam_model_registry, SamPredictor
import gradio as gr
import numpy as np
import cv2
import base64
import torch
from PIL import Image
import io
import argparse
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from transformers import AutoModel, AutoProcessor, GenerationConfig
from transformers import SamModel, SamProcessor
try:
from spaces import GPU
except ImportError:
print("Spaces not installed, using dummy GPU decorator")
def GPU(*args, **kwargs):
def decorator(fn):
return fn
return decorator
# Load SAM model
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = torch.device("cpu")
sam_model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
print("sam ready")
model_path = "HaochenWang/GAR-1B"
# Initialize the captioning model and processor
model = AutoModel.from_pretrained(
model_path,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
device_map="cpu",
use_flash_attn=False
).eval()
processor = AutoProcessor.from_pretrained(
model_path,
trust_remote_code=True,
)
@GPU(duration=75)
def image_to_sam_embedding(base64_image):
try:
# Decode base64 string to bytes
image_bytes = base64.b64decode(base64_image)
# Convert bytes to PIL Image
image = Image.open(io.BytesIO(image_bytes))
# Process image with SAM processor
inputs = sam_processor(image, return_tensors="pt").to(device)
# Get image embedding
with torch.no_grad():
image_embedding = sam_model.get_image_embeddings(inputs["pixel_values"])
# Convert to CPU and numpy
image_embedding = image_embedding.cpu().numpy()
# Encode the embedding as base64
embedding_bytes = image_embedding.tobytes()
embedding_base64 = base64.b64encode(embedding_bytes).decode('utf-8')
return embedding_base64
except Exception as e:
print(f"Error processing image: {str(e)}")
raise gr.Error(f"Failed to process image: {str(e)}")
@GPU(duration=75)
def describe(image_base64: str, mask_base64: str, query: str):
# Convert base64 to PIL Image
image_bytes = base64.b64decode(image_base64.split(',')[1] if ',' in image_base64 else image_base64)
img = Image.open(io.BytesIO(image_bytes))
mask_bytes = base64.b64decode(mask_base64.split(',')[1] if ',' in mask_base64 else mask_base64)
mask = Image.open(io.BytesIO(mask_bytes))
mask = np.array(mask.convert('L'))
prompt_number = model.config.prompt_numbers
prompt_tokens = [f"<Prompt{i_p}>" for i_p in range(prompt_number)] + ["<NO_Prompt>"]
# Assuming mask is given as a numpy array and the image is a PIL image
dataset = SingleRegionCaptionDataset(
image=img,
mask=mask,
processor=processor,
prompt_number=prompt_number,
visual_prompt_tokens=prompt_tokens,
data_dtype=torch.bfloat16,
)
data_sample = dataset[0]
# Generate the caption
with torch.no_grad():
generate_ids = model.generate(
**data_sample,
generation_config=GenerationConfig(
max_new_tokens=1024,
# do_sample= False,
eos_token_id=processor.tokenizer.eos_token_id,
pad_token_id=processor.tokenizer.pad_token_id,
),
return_dict=True,
)
output_caption = processor.tokenizer.decode(generate_ids.sequences[0], skip_special_tokens=True).strip()
# Stream the tokens
text = ""
for token in output_caption:
text += token
yield text
@GPU(duration=75)
def describe_without_streaming(image_base64: str, mask_base64: str, query: str):
# Convert base64 to PIL Image
image_bytes = base64.b64decode(image_base64.split(',')[1] if ',' in image_base64 else image_base64)
img = Image.open(io.BytesIO(image_bytes))
mask_bytes = base64.b64decode(mask_base64.split(',')[1] if ',' in mask_base64 else mask_base64)
mask = Image.open(io.BytesIO(mask_bytes))
mask = np.array(mask.convert('L'))
prompt_number = model.config.prompt_numbers
prompt_tokens = [f"<Prompt{i_p}>" for i_p in range(prompt_number)] + ["<NO_Prompt>"]
# Assuming mask is given as a numpy array and the image is a PIL image
dataset = SingleRegionCaptionDataset(
image=img,
mask=mask,
processor=processor,
prompt_number=prompt_number,
visual_prompt_tokens=prompt_tokens,
data_dtype=torch.bfloat16,
)
data_sample = dataset[0]
# Generate the caption
with torch.no_grad():
generate_ids = model.generate(
**data_sample,
generation_config=GenerationConfig(
max_new_tokens=1024,
# do_sample=False,
eos_token_id=processor.tokenizer.eos_token_id,
pad_token_id=processor.tokenizer.pad_token_id,
),
return_dict=True,
)
output_caption = processor.tokenizer.decode(generate_ids.sequences[0], skip_special_tokens=True).strip()
return output_caption
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Describe Anything gradio demo")
parser.add_argument("--server_addr", "--host", type=str, default=None, help="The server address to listen on.")
parser.add_argument("--server_port", "--port", type=int, default=None, help="The port to listen on.")
parser.add_argument("--model-path", type=str, default="HaochenWang/GAR-1B", help="Path to the model checkpoint")
parser.add_argument("--prompt-mode", type=str, default="full+focal_crop", help="Prompt mode")
parser.add_argument("--conv-mode", type=str, default="v1", help="Conversation mode")
parser.add_argument("--temperature", type=float, default=0.2, help="Sampling temperature")
parser.add_argument("--top_p", type=float, default=0.5, help="Top-p for sampling")
args = parser.parse_args()
# Create Gradio interface
with gr.Blocks() as demo:
gr.Interface(
fn=image_to_sam_embedding,
inputs=gr.Textbox(label="Image Base64"),
outputs=gr.Textbox(label="Embedding Base64"),
title="Image Embedding Generator",
api_name="image_to_sam_embedding"
)
gr.Interface(
fn=describe,
inputs=[
gr.Textbox(label="Image Base64"),
gr.Text(label="Mask Base64"),
gr.Text(label="Prompt")
],
outputs=[
gr.Text(label="Description")
],
title="Mask Description Generator",
api_name="describe"
)
gr.Interface(
fn=describe_without_streaming,
inputs=[
gr.Textbox(label="Image Base64"),
gr.Text(label="Mask Base64"),
gr.Text(label="Prompt")
],
outputs=[
gr.Text(label="Description")
],
title="Mask Description Generator (Non-Streaming)",
api_name="describe_without_streaming"
)
demo._block_thread = demo.block_thread
demo.block_thread = lambda: None
demo.launch(
share=True,
server_name=args.server_addr,
server_port=args.server_port,
ssr_mode=False,
)
for route in demo.app.routes:
if route.path == "/":
demo.app.routes.remove(route)
demo.app.mount("/", StaticFiles(directory="dist", html=True), name="demo")
demo._block_thread()