|
import pytextrank |
|
import spacy |
|
import streamlit as st |
|
st.title("Extractive Text Summarization") |
|
nlp = spacy.load("en_core_web_sm") |
|
nlp.add_pipe("textrank") |
|
input= st.text_area("Input text to summarize") |
|
user_limit=int(len(input.split("."))/5) |
|
doc=nlp(input) |
|
output="" |
|
if st.button("Summarize"): |
|
for i in doc._.textrank.summary(limit_sentences=user_limit): |
|
a=i.text |
|
output=output+a |
|
st.markdown(output) |
|
st.text("Length of Article="+str(len(input.split()))+" words") |
|
st.text("Length of summary="+str(len(output.split()))+" words") |