import pytextrank import spacy import streamlit as st st.title("Extractive Text Summarization") nlp = spacy.load("en_core_web_sm") nlp.add_pipe("textrank") input= st.text_area("Input text to summarize") user_limit=int(len(input.split("."))/5) doc=nlp(input) output="" if st.button("Summarize"): for i in doc._.textrank.summary(limit_sentences=user_limit): a=i.text output=output+a st.markdown(output) st.text("Length of Article="+str(len(input.split()))+" words") st.text("Length of summary="+str(len(output.split()))+" words")