Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import List, Optional, Union | |
import torch | |
from transformers import ( | |
XLMRobertaTokenizer, | |
) | |
from ...models import UNet2DConditionModel, VQModel | |
from ...pipelines import DiffusionPipeline | |
from ...pipelines.pipeline_utils import ImagePipelineOutput | |
from ...schedulers import DDIMScheduler, DDPMScheduler | |
from ...utils import ( | |
is_accelerate_available, | |
is_accelerate_version, | |
logging, | |
randn_tensor, | |
replace_example_docstring, | |
) | |
from .text_encoder import MultilingualCLIP | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline | |
>>> import torch | |
>>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior") | |
>>> pipe_prior.to("cuda") | |
>>> prompt = "red cat, 4k photo" | |
>>> out = pipe_prior(prompt) | |
>>> image_emb = out.image_embeds | |
>>> negative_image_emb = out.negative_image_embeds | |
>>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1") | |
>>> pipe.to("cuda") | |
>>> image = pipe( | |
... prompt, | |
... image_embeds=image_emb, | |
... negative_image_embeds=negative_image_emb, | |
... height=768, | |
... width=768, | |
... num_inference_steps=100, | |
... ).images | |
>>> image[0].save("cat.png") | |
``` | |
""" | |
def get_new_h_w(h, w, scale_factor=8): | |
new_h = h // scale_factor**2 | |
if h % scale_factor**2 != 0: | |
new_h += 1 | |
new_w = w // scale_factor**2 | |
if w % scale_factor**2 != 0: | |
new_w += 1 | |
return new_h * scale_factor, new_w * scale_factor | |
class KandinskyPipeline(DiffusionPipeline): | |
""" | |
Pipeline for text-to-image generation using Kandinsky | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
text_encoder ([`MultilingualCLIP`]): | |
Frozen text-encoder. | |
tokenizer ([`XLMRobertaTokenizer`]): | |
Tokenizer of class | |
scheduler (Union[`DDIMScheduler`,`DDPMScheduler`]): | |
A scheduler to be used in combination with `unet` to generate image latents. | |
unet ([`UNet2DConditionModel`]): | |
Conditional U-Net architecture to denoise the image embedding. | |
movq ([`VQModel`]): | |
MoVQ Decoder to generate the image from the latents. | |
""" | |
def __init__( | |
self, | |
text_encoder: MultilingualCLIP, | |
tokenizer: XLMRobertaTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: Union[DDIMScheduler, DDPMScheduler], | |
movq: VQModel, | |
): | |
super().__init__() | |
self.register_modules( | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
movq=movq, | |
) | |
self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) | |
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents | |
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
if latents.shape != shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
latents = latents.to(device) | |
latents = latents * scheduler.init_noise_sigma | |
return latents | |
def _encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
): | |
batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
# get prompt text embeddings | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
truncation=True, | |
max_length=77, | |
return_attention_mask=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
text_input_ids = text_input_ids.to(device) | |
text_mask = text_inputs.attention_mask.to(device) | |
prompt_embeds, text_encoder_hidden_states = self.text_encoder( | |
input_ids=text_input_ids, attention_mask=text_mask | |
) | |
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | |
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) | |
if do_classifier_free_guidance: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=77, | |
truncation=True, | |
return_attention_mask=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
uncond_text_input_ids = uncond_input.input_ids.to(device) | |
uncond_text_mask = uncond_input.attention_mask.to(device) | |
negative_prompt_embeds, uncond_text_encoder_hidden_states = self.text_encoder( | |
input_ids=uncond_text_input_ids, attention_mask=uncond_text_mask | |
) | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) | |
seq_len = uncond_text_encoder_hidden_states.shape[1] | |
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) | |
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( | |
batch_size * num_images_per_prompt, seq_len, -1 | |
) | |
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) | |
# done duplicates | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) | |
text_mask = torch.cat([uncond_text_mask, text_mask]) | |
return prompt_embeds, text_encoder_hidden_states, text_mask | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's | |
models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only | |
when their specific submodule has its `forward` method called. | |
""" | |
if is_accelerate_available(): | |
from accelerate import cpu_offload | |
else: | |
raise ImportError("Please install accelerate via `pip install accelerate`") | |
device = torch.device(f"cuda:{gpu_id}") | |
models = [ | |
self.unet, | |
self.text_encoder, | |
self.movq, | |
] | |
for cpu_offloaded_model in models: | |
if cpu_offloaded_model is not None: | |
cpu_offload(cpu_offloaded_model, device) | |
def enable_model_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
""" | |
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | |
from accelerate import cpu_offload_with_hook | |
else: | |
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") | |
device = torch.device(f"cuda:{gpu_id}") | |
if self.device.type != "cpu": | |
self.to("cpu", silence_dtype_warnings=True) | |
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
hook = None | |
for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: | |
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) | |
if self.safety_checker is not None: | |
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) | |
# We'll offload the last model manually. | |
self.final_offload_hook = hook | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device | |
def _execution_device(self): | |
r""" | |
Returns the device on which the pipeline's models will be executed. After calling | |
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
hooks. | |
""" | |
if not hasattr(self.unet, "_hf_hook"): | |
return self.device | |
for module in self.unet.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]], | |
negative_image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]], | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
height: int = 512, | |
width: int = 512, | |
num_inference_steps: int = 100, | |
guidance_scale: float = 4.0, | |
num_images_per_prompt: int = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
): | |
""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation. | |
image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`): | |
The clip image embeddings for text prompt, that will be used to condition the image generation. | |
negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`): | |
The clip image embeddings for negative text prompt, will be used to condition the image generation. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
if `guidance_scale` is less than `1`). | |
height (`int`, *optional*, defaults to 512): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to 512): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 100): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 4.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` | |
(`np.array`) or `"pt"` (`torch.Tensor`). | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
Examples: | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple` | |
""" | |
if isinstance(prompt, str): | |
batch_size = 1 | |
elif isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
device = self._execution_device | |
batch_size = batch_size * num_images_per_prompt | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
prompt_embeds, text_encoder_hidden_states, _ = self._encode_prompt( | |
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt | |
) | |
if isinstance(image_embeds, list): | |
image_embeds = torch.cat(image_embeds, dim=0) | |
if isinstance(negative_image_embeds, list): | |
negative_image_embeds = torch.cat(negative_image_embeds, dim=0) | |
if do_classifier_free_guidance: | |
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to( | |
dtype=prompt_embeds.dtype, device=device | |
) | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps_tensor = self.scheduler.timesteps | |
num_channels_latents = self.unet.config.in_channels | |
height, width = get_new_h_w(height, width, self.movq_scale_factor) | |
# create initial latent | |
latents = self.prepare_latents( | |
(batch_size, num_channels_latents, height, width), | |
text_encoder_hidden_states.dtype, | |
device, | |
generator, | |
latents, | |
self.scheduler, | |
) | |
for i, t in enumerate(self.progress_bar(timesteps_tensor)): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
added_cond_kwargs = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} | |
noise_pred = self.unet( | |
sample=latent_model_input, | |
timestep=t, | |
encoder_hidden_states=text_encoder_hidden_states, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
if do_classifier_free_guidance: | |
noise_pred, variance_pred = noise_pred.split(latents.shape[1], dim=1) | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
_, variance_pred_text = variance_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1) | |
if not ( | |
hasattr(self.scheduler.config, "variance_type") | |
and self.scheduler.config.variance_type in ["learned", "learned_range"] | |
): | |
noise_pred, _ = noise_pred.split(latents.shape[1], dim=1) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step( | |
noise_pred, | |
t, | |
latents, | |
generator=generator, | |
).prev_sample | |
# post-processing | |
image = self.movq.decode(latents, force_not_quantize=True)["sample"] | |
if output_type not in ["pt", "np", "pil"]: | |
raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") | |
if output_type in ["np", "pil"]: | |
image = image * 0.5 + 0.5 | |
image = image.clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |