Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 Open AI and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from dataclasses import dataclass | |
from typing import Optional, Tuple | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from ...configuration_utils import ConfigMixin, register_to_config | |
from ...models import ModelMixin | |
from ...utils import BaseOutput | |
from .camera import create_pan_cameras | |
def sample_pmf(pmf: torch.Tensor, n_samples: int) -> torch.Tensor: | |
r""" | |
Sample from the given discrete probability distribution with replacement. | |
The i-th bin is assumed to have mass pmf[i]. | |
Args: | |
pmf: [batch_size, *shape, n_samples, 1] where (pmf.sum(dim=-2) == 1).all() | |
n_samples: number of samples | |
Return: | |
indices sampled with replacement | |
""" | |
*shape, support_size, last_dim = pmf.shape | |
assert last_dim == 1 | |
cdf = torch.cumsum(pmf.view(-1, support_size), dim=1) | |
inds = torch.searchsorted(cdf, torch.rand(cdf.shape[0], n_samples, device=cdf.device)) | |
return inds.view(*shape, n_samples, 1).clamp(0, support_size - 1) | |
def posenc_nerf(x: torch.Tensor, min_deg: int = 0, max_deg: int = 15) -> torch.Tensor: | |
""" | |
Concatenate x and its positional encodings, following NeRF. | |
Reference: https://arxiv.org/pdf/2210.04628.pdf | |
""" | |
if min_deg == max_deg: | |
return x | |
scales = 2.0 ** torch.arange(min_deg, max_deg, dtype=x.dtype, device=x.device) | |
*shape, dim = x.shape | |
xb = (x.reshape(-1, 1, dim) * scales.view(1, -1, 1)).reshape(*shape, -1) | |
assert xb.shape[-1] == dim * (max_deg - min_deg) | |
emb = torch.cat([xb, xb + math.pi / 2.0], axis=-1).sin() | |
return torch.cat([x, emb], dim=-1) | |
def encode_position(position): | |
return posenc_nerf(position, min_deg=0, max_deg=15) | |
def encode_direction(position, direction=None): | |
if direction is None: | |
return torch.zeros_like(posenc_nerf(position, min_deg=0, max_deg=8)) | |
else: | |
return posenc_nerf(direction, min_deg=0, max_deg=8) | |
def _sanitize_name(x: str) -> str: | |
return x.replace(".", "__") | |
def integrate_samples(volume_range, ts, density, channels): | |
r""" | |
Function integrating the model output. | |
Args: | |
volume_range: Specifies the integral range [t0, t1] | |
ts: timesteps | |
density: torch.Tensor [batch_size, *shape, n_samples, 1] | |
channels: torch.Tensor [batch_size, *shape, n_samples, n_channels] | |
returns: | |
channels: integrated rgb output weights: torch.Tensor [batch_size, *shape, n_samples, 1] (density | |
*transmittance)[i] weight for each rgb output at [..., i, :]. transmittance: transmittance of this volume | |
) | |
""" | |
# 1. Calculate the weights | |
_, _, dt = volume_range.partition(ts) | |
ddensity = density * dt | |
mass = torch.cumsum(ddensity, dim=-2) | |
transmittance = torch.exp(-mass[..., -1, :]) | |
alphas = 1.0 - torch.exp(-ddensity) | |
Ts = torch.exp(torch.cat([torch.zeros_like(mass[..., :1, :]), -mass[..., :-1, :]], dim=-2)) | |
# This is the probability of light hitting and reflecting off of | |
# something at depth [..., i, :]. | |
weights = alphas * Ts | |
# 2. Integrate channels | |
channels = torch.sum(channels * weights, dim=-2) | |
return channels, weights, transmittance | |
class VoidNeRFModel(nn.Module): | |
""" | |
Implements the default empty space model where all queries are rendered as background. | |
""" | |
def __init__(self, background, channel_scale=255.0): | |
super().__init__() | |
background = nn.Parameter(torch.from_numpy(np.array(background)).to(dtype=torch.float32) / channel_scale) | |
self.register_buffer("background", background) | |
def forward(self, position): | |
background = self.background[None].to(position.device) | |
shape = position.shape[:-1] | |
ones = [1] * (len(shape) - 1) | |
n_channels = background.shape[-1] | |
background = torch.broadcast_to(background.view(background.shape[0], *ones, n_channels), [*shape, n_channels]) | |
return background | |
class VolumeRange: | |
t0: torch.Tensor | |
t1: torch.Tensor | |
intersected: torch.Tensor | |
def __post_init__(self): | |
assert self.t0.shape == self.t1.shape == self.intersected.shape | |
def partition(self, ts): | |
""" | |
Partitions t0 and t1 into n_samples intervals. | |
Args: | |
ts: [batch_size, *shape, n_samples, 1] | |
Return: | |
lower: [batch_size, *shape, n_samples, 1] upper: [batch_size, *shape, n_samples, 1] delta: [batch_size, | |
*shape, n_samples, 1] | |
where | |
ts \\in [lower, upper] deltas = upper - lower | |
""" | |
mids = (ts[..., 1:, :] + ts[..., :-1, :]) * 0.5 | |
lower = torch.cat([self.t0[..., None, :], mids], dim=-2) | |
upper = torch.cat([mids, self.t1[..., None, :]], dim=-2) | |
delta = upper - lower | |
assert lower.shape == upper.shape == delta.shape == ts.shape | |
return lower, upper, delta | |
class BoundingBoxVolume(nn.Module): | |
""" | |
Axis-aligned bounding box defined by the two opposite corners. | |
""" | |
def __init__( | |
self, | |
*, | |
bbox_min, | |
bbox_max, | |
min_dist: float = 0.0, | |
min_t_range: float = 1e-3, | |
): | |
""" | |
Args: | |
bbox_min: the left/bottommost corner of the bounding box | |
bbox_max: the other corner of the bounding box | |
min_dist: all rays should start at least this distance away from the origin. | |
""" | |
super().__init__() | |
self.min_dist = min_dist | |
self.min_t_range = min_t_range | |
self.bbox_min = torch.tensor(bbox_min) | |
self.bbox_max = torch.tensor(bbox_max) | |
self.bbox = torch.stack([self.bbox_min, self.bbox_max]) | |
assert self.bbox.shape == (2, 3) | |
assert min_dist >= 0.0 | |
assert min_t_range > 0.0 | |
def intersect( | |
self, | |
origin: torch.Tensor, | |
direction: torch.Tensor, | |
t0_lower: Optional[torch.Tensor] = None, | |
epsilon=1e-6, | |
): | |
""" | |
Args: | |
origin: [batch_size, *shape, 3] | |
direction: [batch_size, *shape, 3] | |
t0_lower: Optional [batch_size, *shape, 1] lower bound of t0 when intersecting this volume. | |
params: Optional meta parameters in case Volume is parametric | |
epsilon: to stabilize calculations | |
Return: | |
A tuple of (t0, t1, intersected) where each has a shape [batch_size, *shape, 1]. If a ray intersects with | |
the volume, `o + td` is in the volume for all t in [t0, t1]. If the volume is bounded, t1 is guaranteed to | |
be on the boundary of the volume. | |
""" | |
batch_size, *shape, _ = origin.shape | |
ones = [1] * len(shape) | |
bbox = self.bbox.view(1, *ones, 2, 3).to(origin.device) | |
def _safe_divide(a, b, epsilon=1e-6): | |
return a / torch.where(b < 0, b - epsilon, b + epsilon) | |
ts = _safe_divide(bbox - origin[..., None, :], direction[..., None, :], epsilon=epsilon) | |
# Cases to think about: | |
# | |
# 1. t1 <= t0: the ray does not pass through the AABB. | |
# 2. t0 < t1 <= 0: the ray intersects but the BB is behind the origin. | |
# 3. t0 <= 0 <= t1: the ray starts from inside the BB | |
# 4. 0 <= t0 < t1: the ray is not inside and intersects with the BB twice. | |
# | |
# 1 and 4 are clearly handled from t0 < t1 below. | |
# Making t0 at least min_dist (>= 0) takes care of 2 and 3. | |
t0 = ts.min(dim=-2).values.max(dim=-1, keepdim=True).values.clamp(self.min_dist) | |
t1 = ts.max(dim=-2).values.min(dim=-1, keepdim=True).values | |
assert t0.shape == t1.shape == (batch_size, *shape, 1) | |
if t0_lower is not None: | |
assert t0.shape == t0_lower.shape | |
t0 = torch.maximum(t0, t0_lower) | |
intersected = t0 + self.min_t_range < t1 | |
t0 = torch.where(intersected, t0, torch.zeros_like(t0)) | |
t1 = torch.where(intersected, t1, torch.ones_like(t1)) | |
return VolumeRange(t0=t0, t1=t1, intersected=intersected) | |
class StratifiedRaySampler(nn.Module): | |
""" | |
Instead of fixed intervals, a sample is drawn uniformly at random from each interval. | |
""" | |
def __init__(self, depth_mode: str = "linear"): | |
""" | |
:param depth_mode: linear samples ts linearly in depth. harmonic ensures | |
closer points are sampled more densely. | |
""" | |
self.depth_mode = depth_mode | |
assert self.depth_mode in ("linear", "geometric", "harmonic") | |
def sample( | |
self, | |
t0: torch.Tensor, | |
t1: torch.Tensor, | |
n_samples: int, | |
epsilon: float = 1e-3, | |
) -> torch.Tensor: | |
""" | |
Args: | |
t0: start time has shape [batch_size, *shape, 1] | |
t1: finish time has shape [batch_size, *shape, 1] | |
n_samples: number of ts to sample | |
Return: | |
sampled ts of shape [batch_size, *shape, n_samples, 1] | |
""" | |
ones = [1] * (len(t0.shape) - 1) | |
ts = torch.linspace(0, 1, n_samples).view(*ones, n_samples).to(t0.dtype).to(t0.device) | |
if self.depth_mode == "linear": | |
ts = t0 * (1.0 - ts) + t1 * ts | |
elif self.depth_mode == "geometric": | |
ts = (t0.clamp(epsilon).log() * (1.0 - ts) + t1.clamp(epsilon).log() * ts).exp() | |
elif self.depth_mode == "harmonic": | |
# The original NeRF recommends this interpolation scheme for | |
# spherical scenes, but there could be some weird edge cases when | |
# the observer crosses from the inner to outer volume. | |
ts = 1.0 / (1.0 / t0.clamp(epsilon) * (1.0 - ts) + 1.0 / t1.clamp(epsilon) * ts) | |
mids = 0.5 * (ts[..., 1:] + ts[..., :-1]) | |
upper = torch.cat([mids, t1], dim=-1) | |
lower = torch.cat([t0, mids], dim=-1) | |
# yiyi notes: add a random seed here for testing, don't forget to remove | |
torch.manual_seed(0) | |
t_rand = torch.rand_like(ts) | |
ts = lower + (upper - lower) * t_rand | |
return ts.unsqueeze(-1) | |
class ImportanceRaySampler(nn.Module): | |
""" | |
Given the initial estimate of densities, this samples more from regions/bins expected to have objects. | |
""" | |
def __init__( | |
self, | |
volume_range: VolumeRange, | |
ts: torch.Tensor, | |
weights: torch.Tensor, | |
blur_pool: bool = False, | |
alpha: float = 1e-5, | |
): | |
""" | |
Args: | |
volume_range: the range in which a ray intersects the given volume. | |
ts: earlier samples from the coarse rendering step | |
weights: discretized version of density * transmittance | |
blur_pool: if true, use 2-tap max + 2-tap blur filter from mip-NeRF. | |
alpha: small value to add to weights. | |
""" | |
self.volume_range = volume_range | |
self.ts = ts.clone().detach() | |
self.weights = weights.clone().detach() | |
self.blur_pool = blur_pool | |
self.alpha = alpha | |
def sample(self, t0: torch.Tensor, t1: torch.Tensor, n_samples: int) -> torch.Tensor: | |
""" | |
Args: | |
t0: start time has shape [batch_size, *shape, 1] | |
t1: finish time has shape [batch_size, *shape, 1] | |
n_samples: number of ts to sample | |
Return: | |
sampled ts of shape [batch_size, *shape, n_samples, 1] | |
""" | |
lower, upper, _ = self.volume_range.partition(self.ts) | |
batch_size, *shape, n_coarse_samples, _ = self.ts.shape | |
weights = self.weights | |
if self.blur_pool: | |
padded = torch.cat([weights[..., :1, :], weights, weights[..., -1:, :]], dim=-2) | |
maxes = torch.maximum(padded[..., :-1, :], padded[..., 1:, :]) | |
weights = 0.5 * (maxes[..., :-1, :] + maxes[..., 1:, :]) | |
weights = weights + self.alpha | |
pmf = weights / weights.sum(dim=-2, keepdim=True) | |
inds = sample_pmf(pmf, n_samples) | |
assert inds.shape == (batch_size, *shape, n_samples, 1) | |
assert (inds >= 0).all() and (inds < n_coarse_samples).all() | |
t_rand = torch.rand(inds.shape, device=inds.device) | |
lower_ = torch.gather(lower, -2, inds) | |
upper_ = torch.gather(upper, -2, inds) | |
ts = lower_ + (upper_ - lower_) * t_rand | |
ts = torch.sort(ts, dim=-2).values | |
return ts | |
class MLPNeRFModelOutput(BaseOutput): | |
density: torch.Tensor | |
signed_distance: torch.Tensor | |
channels: torch.Tensor | |
ts: torch.Tensor | |
class MLPNeRSTFModel(ModelMixin, ConfigMixin): | |
def __init__( | |
self, | |
d_hidden: int = 256, | |
n_output: int = 12, | |
n_hidden_layers: int = 6, | |
act_fn: str = "swish", | |
insert_direction_at: int = 4, | |
): | |
super().__init__() | |
# Instantiate the MLP | |
# Find out the dimension of encoded position and direction | |
dummy = torch.eye(1, 3) | |
d_posenc_pos = encode_position(position=dummy).shape[-1] | |
d_posenc_dir = encode_direction(position=dummy).shape[-1] | |
mlp_widths = [d_hidden] * n_hidden_layers | |
input_widths = [d_posenc_pos] + mlp_widths | |
output_widths = mlp_widths + [n_output] | |
if insert_direction_at is not None: | |
input_widths[insert_direction_at] += d_posenc_dir | |
self.mlp = nn.ModuleList([nn.Linear(d_in, d_out) for d_in, d_out in zip(input_widths, output_widths)]) | |
if act_fn == "swish": | |
# self.activation = swish | |
# yiyi testing: | |
self.activation = lambda x: F.silu(x) | |
else: | |
raise ValueError(f"Unsupported activation function {act_fn}") | |
self.sdf_activation = torch.tanh | |
self.density_activation = torch.nn.functional.relu | |
self.channel_activation = torch.sigmoid | |
def map_indices_to_keys(self, output): | |
h_map = { | |
"sdf": (0, 1), | |
"density_coarse": (1, 2), | |
"density_fine": (2, 3), | |
"stf": (3, 6), | |
"nerf_coarse": (6, 9), | |
"nerf_fine": (9, 12), | |
} | |
mapped_output = {k: output[..., start:end] for k, (start, end) in h_map.items()} | |
return mapped_output | |
def forward(self, *, position, direction, ts, nerf_level="coarse"): | |
h = encode_position(position) | |
h_preact = h | |
h_directionless = None | |
for i, layer in enumerate(self.mlp): | |
if i == self.config.insert_direction_at: # 4 in the config | |
h_directionless = h_preact | |
h_direction = encode_direction(position, direction=direction) | |
h = torch.cat([h, h_direction], dim=-1) | |
h = layer(h) | |
h_preact = h | |
if i < len(self.mlp) - 1: | |
h = self.activation(h) | |
h_final = h | |
if h_directionless is None: | |
h_directionless = h_preact | |
activation = self.map_indices_to_keys(h_final) | |
if nerf_level == "coarse": | |
h_density = activation["density_coarse"] | |
h_channels = activation["nerf_coarse"] | |
else: | |
h_density = activation["density_fine"] | |
h_channels = activation["nerf_fine"] | |
density = self.density_activation(h_density) | |
signed_distance = self.sdf_activation(activation["sdf"]) | |
channels = self.channel_activation(h_channels) | |
# yiyi notes: I think signed_distance is not used | |
return MLPNeRFModelOutput(density=density, signed_distance=signed_distance, channels=channels, ts=ts) | |
class ChannelsProj(nn.Module): | |
def __init__( | |
self, | |
*, | |
vectors: int, | |
channels: int, | |
d_latent: int, | |
): | |
super().__init__() | |
self.proj = nn.Linear(d_latent, vectors * channels) | |
self.norm = nn.LayerNorm(channels) | |
self.d_latent = d_latent | |
self.vectors = vectors | |
self.channels = channels | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x_bvd = x | |
w_vcd = self.proj.weight.view(self.vectors, self.channels, self.d_latent) | |
b_vc = self.proj.bias.view(1, self.vectors, self.channels) | |
h = torch.einsum("bvd,vcd->bvc", x_bvd, w_vcd) | |
h = self.norm(h) | |
h = h + b_vc | |
return h | |
class ShapEParamsProjModel(ModelMixin, ConfigMixin): | |
""" | |
project the latent representation of a 3D asset to obtain weights of a multi-layer perceptron (MLP). | |
For more details, see the original paper: | |
""" | |
def __init__( | |
self, | |
*, | |
param_names: Tuple[str] = ( | |
"nerstf.mlp.0.weight", | |
"nerstf.mlp.1.weight", | |
"nerstf.mlp.2.weight", | |
"nerstf.mlp.3.weight", | |
), | |
param_shapes: Tuple[Tuple[int]] = ( | |
(256, 93), | |
(256, 256), | |
(256, 256), | |
(256, 256), | |
), | |
d_latent: int = 1024, | |
): | |
super().__init__() | |
# check inputs | |
if len(param_names) != len(param_shapes): | |
raise ValueError("Must provide same number of `param_names` as `param_shapes`") | |
self.projections = nn.ModuleDict({}) | |
for k, (vectors, channels) in zip(param_names, param_shapes): | |
self.projections[_sanitize_name(k)] = ChannelsProj( | |
vectors=vectors, | |
channels=channels, | |
d_latent=d_latent, | |
) | |
def forward(self, x: torch.Tensor): | |
out = {} | |
start = 0 | |
for k, shape in zip(self.config.param_names, self.config.param_shapes): | |
vectors, _ = shape | |
end = start + vectors | |
x_bvd = x[:, start:end] | |
out[k] = self.projections[_sanitize_name(k)](x_bvd).reshape(len(x), *shape) | |
start = end | |
return out | |
class ShapERenderer(ModelMixin, ConfigMixin): | |
def __init__( | |
self, | |
*, | |
param_names: Tuple[str] = ( | |
"nerstf.mlp.0.weight", | |
"nerstf.mlp.1.weight", | |
"nerstf.mlp.2.weight", | |
"nerstf.mlp.3.weight", | |
), | |
param_shapes: Tuple[Tuple[int]] = ( | |
(256, 93), | |
(256, 256), | |
(256, 256), | |
(256, 256), | |
), | |
d_latent: int = 1024, | |
d_hidden: int = 256, | |
n_output: int = 12, | |
n_hidden_layers: int = 6, | |
act_fn: str = "swish", | |
insert_direction_at: int = 4, | |
background: Tuple[float] = ( | |
255.0, | |
255.0, | |
255.0, | |
), | |
): | |
super().__init__() | |
self.params_proj = ShapEParamsProjModel( | |
param_names=param_names, | |
param_shapes=param_shapes, | |
d_latent=d_latent, | |
) | |
self.mlp = MLPNeRSTFModel(d_hidden, n_output, n_hidden_layers, act_fn, insert_direction_at) | |
self.void = VoidNeRFModel(background=background, channel_scale=255.0) | |
self.volume = BoundingBoxVolume(bbox_max=[1.0, 1.0, 1.0], bbox_min=[-1.0, -1.0, -1.0]) | |
def render_rays(self, rays, sampler, n_samples, prev_model_out=None, render_with_direction=False): | |
""" | |
Perform volumetric rendering over a partition of possible t's in the union of rendering volumes (written below | |
with some abuse of notations) | |
C(r) := sum( | |
transmittance(t[i]) * integrate( | |
lambda t: density(t) * channels(t) * transmittance(t), [t[i], t[i + 1]], | |
) for i in range(len(parts)) | |
) + transmittance(t[-1]) * void_model(t[-1]).channels | |
where | |
1) transmittance(s) := exp(-integrate(density, [t[0], s])) calculates the probability of light passing through | |
the volume specified by [t[0], s]. (transmittance of 1 means light can pass freely) 2) density and channels are | |
obtained by evaluating the appropriate part.model at time t. 3) [t[i], t[i + 1]] is defined as the range of t | |
where the ray intersects (parts[i].volume \\ union(part.volume for part in parts[:i])) at the surface of the | |
shell (if bounded). If the ray does not intersect, the integral over this segment is evaluated as 0 and | |
transmittance(t[i + 1]) := transmittance(t[i]). 4) The last term is integration to infinity (e.g. [t[-1], | |
math.inf]) that is evaluated by the void_model (i.e. we consider this space to be empty). | |
args: | |
rays: [batch_size x ... x 2 x 3] origin and direction. sampler: disjoint volume integrals. n_samples: | |
number of ts to sample. prev_model_outputs: model outputs from the previous rendering step, including | |
:return: A tuple of | |
- `channels` | |
- A importance samplers for additional fine-grained rendering | |
- raw model output | |
""" | |
origin, direction = rays[..., 0, :], rays[..., 1, :] | |
# Integrate over [t[i], t[i + 1]] | |
# 1 Intersect the rays with the current volume and sample ts to integrate along. | |
vrange = self.volume.intersect(origin, direction, t0_lower=None) | |
ts = sampler.sample(vrange.t0, vrange.t1, n_samples) | |
ts = ts.to(rays.dtype) | |
if prev_model_out is not None: | |
# Append the previous ts now before fprop because previous | |
# rendering used a different model and we can't reuse the output. | |
ts = torch.sort(torch.cat([ts, prev_model_out.ts], dim=-2), dim=-2).values | |
batch_size, *_shape, _t0_dim = vrange.t0.shape | |
_, *ts_shape, _ts_dim = ts.shape | |
# 2. Get the points along the ray and query the model | |
directions = torch.broadcast_to(direction.unsqueeze(-2), [batch_size, *ts_shape, 3]) | |
positions = origin.unsqueeze(-2) + ts * directions | |
directions = directions.to(self.mlp.dtype) | |
positions = positions.to(self.mlp.dtype) | |
optional_directions = directions if render_with_direction else None | |
model_out = self.mlp( | |
position=positions, | |
direction=optional_directions, | |
ts=ts, | |
nerf_level="coarse" if prev_model_out is None else "fine", | |
) | |
# 3. Integrate the model results | |
channels, weights, transmittance = integrate_samples( | |
vrange, model_out.ts, model_out.density, model_out.channels | |
) | |
# 4. Clean up results that do not intersect with the volume. | |
transmittance = torch.where(vrange.intersected, transmittance, torch.ones_like(transmittance)) | |
channels = torch.where(vrange.intersected, channels, torch.zeros_like(channels)) | |
# 5. integration to infinity (e.g. [t[-1], math.inf]) that is evaluated by the void_model (i.e. we consider this space to be empty). | |
channels = channels + transmittance * self.void(origin) | |
weighted_sampler = ImportanceRaySampler(vrange, ts=model_out.ts, weights=weights) | |
return channels, weighted_sampler, model_out | |
def decode( | |
self, | |
latents, | |
device, | |
size: int = 64, | |
ray_batch_size: int = 4096, | |
n_coarse_samples=64, | |
n_fine_samples=128, | |
): | |
# project the the paramters from the generated latents | |
projected_params = self.params_proj(latents) | |
# update the mlp layers of the renderer | |
for name, param in self.mlp.state_dict().items(): | |
if f"nerstf.{name}" in projected_params.keys(): | |
param.copy_(projected_params[f"nerstf.{name}"].squeeze(0)) | |
# create cameras object | |
camera = create_pan_cameras(size) | |
rays = camera.camera_rays | |
rays = rays.to(device) | |
n_batches = rays.shape[1] // ray_batch_size | |
coarse_sampler = StratifiedRaySampler() | |
images = [] | |
for idx in range(n_batches): | |
rays_batch = rays[:, idx * ray_batch_size : (idx + 1) * ray_batch_size] | |
# render rays with coarse, stratified samples. | |
_, fine_sampler, coarse_model_out = self.render_rays(rays_batch, coarse_sampler, n_coarse_samples) | |
# Then, render with additional importance-weighted ray samples. | |
channels, _, _ = self.render_rays( | |
rays_batch, fine_sampler, n_fine_samples, prev_model_out=coarse_model_out | |
) | |
images.append(channels) | |
images = torch.cat(images, dim=1) | |
images = images.view(*camera.shape, camera.height, camera.width, -1).squeeze(0) | |
return images | |