Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 TSAIL Team and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# DISCLAIMER: check https://arxiv.org/abs/2302.04867 and https://github.com/wl-zhao/UniPC for more info | |
# The codebase is modified based on https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py | |
import math | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from ..configuration_utils import ConfigMixin, register_to_config | |
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput | |
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999): | |
""" | |
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of | |
(1-beta) over time from t = [0,1]. | |
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up | |
to that part of the diffusion process. | |
Args: | |
num_diffusion_timesteps (`int`): the number of betas to produce. | |
max_beta (`float`): the maximum beta to use; use values lower than 1 to | |
prevent singularities. | |
Returns: | |
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs | |
""" | |
def alpha_bar(time_step): | |
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 | |
betas = [] | |
for i in range(num_diffusion_timesteps): | |
t1 = i / num_diffusion_timesteps | |
t2 = (i + 1) / num_diffusion_timesteps | |
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
return torch.tensor(betas, dtype=torch.float32) | |
class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin): | |
""" | |
UniPC is a training-free framework designed for the fast sampling of diffusion models, which consists of a | |
corrector (UniC) and a predictor (UniP) that share a unified analytical form and support arbitrary orders. UniPC is | |
by desinged model-agnostic, supporting pixel-space/latent-space DPMs on unconditional/conditional sampling. It can | |
also be applied to both noise prediction model and data prediction model. The corrector UniC can be also applied | |
after any off-the-shelf solvers to increase the order of accuracy. | |
For more details, see the original paper: https://arxiv.org/abs/2302.04867 | |
Currently, we support the multistep UniPC for both noise prediction models and data prediction models. We recommend | |
to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling. | |
We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space | |
diffusion models, you can set both `predict_x0=True` and `thresholding=True` to use the dynamic thresholding. Note | |
that the thresholding method is unsuitable for latent-space diffusion models (such as stable-diffusion). | |
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` | |
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. | |
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and | |
[`~SchedulerMixin.from_pretrained`] functions. | |
Args: | |
num_train_timesteps (`int`): number of diffusion steps used to train the model. | |
beta_start (`float`): the starting `beta` value of inference. | |
beta_end (`float`): the final `beta` value. | |
beta_schedule (`str`): | |
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from | |
`linear`, `scaled_linear`, or `squaredcos_cap_v2`. | |
trained_betas (`np.ndarray`, optional): | |
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. | |
solver_order (`int`, default `2`): | |
the order of UniPC, also the p in UniPC-p; can be any positive integer. Note that the effective order of | |
accuracy is `solver_order + 1` due to the UniC. We recommend to use `solver_order=2` for guided sampling, | |
and `solver_order=3` for unconditional sampling. | |
prediction_type (`str`, default `epsilon`, optional): | |
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion | |
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 | |
https://imagen.research.google/video/paper.pdf) | |
thresholding (`bool`, default `False`): | |
whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487). | |
For pixel-space diffusion models, you can set both `predict_x0=True` and `thresholding=True` to use the | |
dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models | |
(such as stable-diffusion). | |
dynamic_thresholding_ratio (`float`, default `0.995`): | |
the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen | |
(https://arxiv.org/abs/2205.11487). | |
sample_max_value (`float`, default `1.0`): | |
the threshold value for dynamic thresholding. Valid only when `thresholding=True` and `predict_x0=True`. | |
predict_x0 (`bool`, default `True`): | |
whether to use the updating algrithm on the predicted x0. See https://arxiv.org/abs/2211.01095 for details | |
solver_type (`str`, default `bh2`): | |
the solver type of UniPC. We recommend use `bh1` for unconditional sampling when steps < 10, and use `bh2` | |
otherwise. | |
lower_order_final (`bool`, default `True`): | |
whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. We empirically | |
find this trick can stabilize the sampling of DPM-Solver for steps < 15, especially for steps <= 10. | |
disable_corrector (`list`, default `[]`): | |
decide which step to disable the corrector. For large guidance scale, the misalignment between the | |
`epsilon_theta(x_t, c)`and `epsilon_theta(x_t^c, c)` might influence the convergence. This can be mitigated | |
by disable the corrector at the first few steps (e.g., disable_corrector=[0]) | |
solver_p (`SchedulerMixin`, default `None`): | |
can be any other scheduler. If specified, the algorithm will become solver_p + UniC. | |
use_karras_sigmas (`bool`, *optional*, defaults to `False`): | |
This parameter controls whether to use Karras sigmas (Karras et al. (2022) scheme) for step sizes in the | |
noise schedule during the sampling process. If True, the sigmas will be determined according to a sequence | |
of noise levels {σi} as defined in Equation (5) of the paper https://arxiv.org/pdf/2206.00364.pdf. | |
timestep_spacing (`str`, default `"linspace"`): | |
The way the timesteps should be scaled. Refer to Table 2. of [Common Diffusion Noise Schedules and Sample | |
Steps are Flawed](https://arxiv.org/abs/2305.08891) for more information. | |
steps_offset (`int`, default `0`): | |
an offset added to the inference steps. You can use a combination of `offset=1` and | |
`set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in | |
stable diffusion. | |
""" | |
_compatibles = [e.name for e in KarrasDiffusionSchedulers] | |
order = 1 | |
def __init__( | |
self, | |
num_train_timesteps: int = 1000, | |
beta_start: float = 0.0001, | |
beta_end: float = 0.02, | |
beta_schedule: str = "linear", | |
trained_betas: Optional[Union[np.ndarray, List[float]]] = None, | |
solver_order: int = 2, | |
prediction_type: str = "epsilon", | |
thresholding: bool = False, | |
dynamic_thresholding_ratio: float = 0.995, | |
sample_max_value: float = 1.0, | |
predict_x0: bool = True, | |
solver_type: str = "bh2", | |
lower_order_final: bool = True, | |
disable_corrector: List[int] = [], | |
solver_p: SchedulerMixin = None, | |
use_karras_sigmas: Optional[bool] = False, | |
timestep_spacing: str = "linspace", | |
steps_offset: int = 0, | |
): | |
if trained_betas is not None: | |
self.betas = torch.tensor(trained_betas, dtype=torch.float32) | |
elif beta_schedule == "linear": | |
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) | |
elif beta_schedule == "scaled_linear": | |
# this schedule is very specific to the latent diffusion model. | |
self.betas = ( | |
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 | |
) | |
elif beta_schedule == "squaredcos_cap_v2": | |
# Glide cosine schedule | |
self.betas = betas_for_alpha_bar(num_train_timesteps) | |
else: | |
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") | |
self.alphas = 1.0 - self.betas | |
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | |
# Currently we only support VP-type noise schedule | |
self.alpha_t = torch.sqrt(self.alphas_cumprod) | |
self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) | |
self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) | |
# standard deviation of the initial noise distribution | |
self.init_noise_sigma = 1.0 | |
if solver_type not in ["bh1", "bh2"]: | |
if solver_type in ["midpoint", "heun", "logrho"]: | |
self.register_to_config(solver_type="bh2") | |
else: | |
raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}") | |
self.predict_x0 = predict_x0 | |
# setable values | |
self.num_inference_steps = None | |
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy() | |
self.timesteps = torch.from_numpy(timesteps) | |
self.model_outputs = [None] * solver_order | |
self.timestep_list = [None] * solver_order | |
self.lower_order_nums = 0 | |
self.disable_corrector = disable_corrector | |
self.solver_p = solver_p | |
self.last_sample = None | |
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | |
""" | |
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. | |
Args: | |
num_inference_steps (`int`): | |
the number of diffusion steps used when generating samples with a pre-trained model. | |
device (`str` or `torch.device`, optional): | |
the device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
""" | |
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 | |
if self.config.timestep_spacing == "linspace": | |
timesteps = ( | |
np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps + 1) | |
.round()[::-1][:-1] | |
.copy() | |
.astype(np.int64) | |
) | |
elif self.config.timestep_spacing == "leading": | |
step_ratio = self.config.num_train_timesteps // (num_inference_steps + 1) | |
# creates integer timesteps by multiplying by ratio | |
# casting to int to avoid issues when num_inference_step is power of 3 | |
timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64) | |
timesteps += self.config.steps_offset | |
elif self.config.timestep_spacing == "trailing": | |
step_ratio = self.config.num_train_timesteps / num_inference_steps | |
# creates integer timesteps by multiplying by ratio | |
# casting to int to avoid issues when num_inference_step is power of 3 | |
timesteps = np.arange(self.config.num_train_timesteps, 0, -step_ratio).round().copy().astype(np.int64) | |
timesteps -= 1 | |
else: | |
raise ValueError( | |
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." | |
) | |
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) | |
if self.config.use_karras_sigmas: | |
log_sigmas = np.log(sigmas) | |
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps) | |
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round() | |
timesteps = np.flip(timesteps).copy().astype(np.int64) | |
self.sigmas = torch.from_numpy(sigmas) | |
# when num_inference_steps == num_train_timesteps, we can end up with | |
# duplicates in timesteps. | |
_, unique_indices = np.unique(timesteps, return_index=True) | |
timesteps = timesteps[np.sort(unique_indices)] | |
self.timesteps = torch.from_numpy(timesteps).to(device) | |
self.num_inference_steps = len(timesteps) | |
self.model_outputs = [ | |
None, | |
] * self.config.solver_order | |
self.lower_order_nums = 0 | |
self.last_sample = None | |
if self.solver_p: | |
self.solver_p.set_timesteps(self.num_inference_steps, device=device) | |
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample | |
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor: | |
""" | |
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the | |
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by | |
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing | |
pixels from saturation at each step. We find that dynamic thresholding results in significantly better | |
photorealism as well as better image-text alignment, especially when using very large guidance weights." | |
https://arxiv.org/abs/2205.11487 | |
""" | |
dtype = sample.dtype | |
batch_size, channels, height, width = sample.shape | |
if dtype not in (torch.float32, torch.float64): | |
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half | |
# Flatten sample for doing quantile calculation along each image | |
sample = sample.reshape(batch_size, channels * height * width) | |
abs_sample = sample.abs() # "a certain percentile absolute pixel value" | |
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) | |
s = torch.clamp( | |
s, min=1, max=self.config.sample_max_value | |
) # When clamped to min=1, equivalent to standard clipping to [-1, 1] | |
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0 | |
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s" | |
sample = sample.reshape(batch_size, channels, height, width) | |
sample = sample.to(dtype) | |
return sample | |
def convert_model_output( | |
self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor | |
) -> torch.FloatTensor: | |
r""" | |
Convert the model output to the corresponding type that the algorithm PC needs. | |
Args: | |
model_output (`torch.FloatTensor`): direct output from learned diffusion model. | |
timestep (`int`): current discrete timestep in the diffusion chain. | |
sample (`torch.FloatTensor`): | |
current instance of sample being created by diffusion process. | |
Returns: | |
`torch.FloatTensor`: the converted model output. | |
""" | |
if self.predict_x0: | |
if self.config.prediction_type == "epsilon": | |
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] | |
x0_pred = (sample - sigma_t * model_output) / alpha_t | |
elif self.config.prediction_type == "sample": | |
x0_pred = model_output | |
elif self.config.prediction_type == "v_prediction": | |
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] | |
x0_pred = alpha_t * sample - sigma_t * model_output | |
else: | |
raise ValueError( | |
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" | |
" `v_prediction` for the UniPCMultistepScheduler." | |
) | |
if self.config.thresholding: | |
x0_pred = self._threshold_sample(x0_pred) | |
return x0_pred | |
else: | |
if self.config.prediction_type == "epsilon": | |
return model_output | |
elif self.config.prediction_type == "sample": | |
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] | |
epsilon = (sample - alpha_t * model_output) / sigma_t | |
return epsilon | |
elif self.config.prediction_type == "v_prediction": | |
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] | |
epsilon = alpha_t * model_output + sigma_t * sample | |
return epsilon | |
else: | |
raise ValueError( | |
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" | |
" `v_prediction` for the UniPCMultistepScheduler." | |
) | |
def multistep_uni_p_bh_update( | |
self, | |
model_output: torch.FloatTensor, | |
prev_timestep: int, | |
sample: torch.FloatTensor, | |
order: int, | |
) -> torch.FloatTensor: | |
""" | |
One step for the UniP (B(h) version). Alternatively, `self.solver_p` is used if is specified. | |
Args: | |
model_output (`torch.FloatTensor`): | |
direct outputs from learned diffusion model at the current timestep. | |
prev_timestep (`int`): previous discrete timestep in the diffusion chain. | |
sample (`torch.FloatTensor`): | |
current instance of sample being created by diffusion process. | |
order (`int`): the order of UniP at this step, also the p in UniPC-p. | |
Returns: | |
`torch.FloatTensor`: the sample tensor at the previous timestep. | |
""" | |
timestep_list = self.timestep_list | |
model_output_list = self.model_outputs | |
s0, t = self.timestep_list[-1], prev_timestep | |
m0 = model_output_list[-1] | |
x = sample | |
if self.solver_p: | |
x_t = self.solver_p.step(model_output, s0, x).prev_sample | |
return x_t | |
lambda_t, lambda_s0 = self.lambda_t[t], self.lambda_t[s0] | |
alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0] | |
sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0] | |
h = lambda_t - lambda_s0 | |
device = sample.device | |
rks = [] | |
D1s = [] | |
for i in range(1, order): | |
si = timestep_list[-(i + 1)] | |
mi = model_output_list[-(i + 1)] | |
lambda_si = self.lambda_t[si] | |
rk = (lambda_si - lambda_s0) / h | |
rks.append(rk) | |
D1s.append((mi - m0) / rk) | |
rks.append(1.0) | |
rks = torch.tensor(rks, device=device) | |
R = [] | |
b = [] | |
hh = -h if self.predict_x0 else h | |
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1 | |
h_phi_k = h_phi_1 / hh - 1 | |
factorial_i = 1 | |
if self.config.solver_type == "bh1": | |
B_h = hh | |
elif self.config.solver_type == "bh2": | |
B_h = torch.expm1(hh) | |
else: | |
raise NotImplementedError() | |
for i in range(1, order + 1): | |
R.append(torch.pow(rks, i - 1)) | |
b.append(h_phi_k * factorial_i / B_h) | |
factorial_i *= i + 1 | |
h_phi_k = h_phi_k / hh - 1 / factorial_i | |
R = torch.stack(R) | |
b = torch.tensor(b, device=device) | |
if len(D1s) > 0: | |
D1s = torch.stack(D1s, dim=1) # (B, K) | |
# for order 2, we use a simplified version | |
if order == 2: | |
rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device) | |
else: | |
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]) | |
else: | |
D1s = None | |
if self.predict_x0: | |
x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0 | |
if D1s is not None: | |
pred_res = torch.einsum("k,bkchw->bchw", rhos_p, D1s) | |
else: | |
pred_res = 0 | |
x_t = x_t_ - alpha_t * B_h * pred_res | |
else: | |
x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0 | |
if D1s is not None: | |
pred_res = torch.einsum("k,bkchw->bchw", rhos_p, D1s) | |
else: | |
pred_res = 0 | |
x_t = x_t_ - sigma_t * B_h * pred_res | |
x_t = x_t.to(x.dtype) | |
return x_t | |
def multistep_uni_c_bh_update( | |
self, | |
this_model_output: torch.FloatTensor, | |
this_timestep: int, | |
last_sample: torch.FloatTensor, | |
this_sample: torch.FloatTensor, | |
order: int, | |
) -> torch.FloatTensor: | |
""" | |
One step for the UniC (B(h) version). | |
Args: | |
this_model_output (`torch.FloatTensor`): the model outputs at `x_t` | |
this_timestep (`int`): the current timestep `t` | |
last_sample (`torch.FloatTensor`): the generated sample before the last predictor: `x_{t-1}` | |
this_sample (`torch.FloatTensor`): the generated sample after the last predictor: `x_{t}` | |
order (`int`): the `p` of UniC-p at this step. Note that the effective order of accuracy | |
should be order + 1 | |
Returns: | |
`torch.FloatTensor`: the corrected sample tensor at the current timestep. | |
""" | |
timestep_list = self.timestep_list | |
model_output_list = self.model_outputs | |
s0, t = timestep_list[-1], this_timestep | |
m0 = model_output_list[-1] | |
x = last_sample | |
x_t = this_sample | |
model_t = this_model_output | |
lambda_t, lambda_s0 = self.lambda_t[t], self.lambda_t[s0] | |
alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0] | |
sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0] | |
h = lambda_t - lambda_s0 | |
device = this_sample.device | |
rks = [] | |
D1s = [] | |
for i in range(1, order): | |
si = timestep_list[-(i + 1)] | |
mi = model_output_list[-(i + 1)] | |
lambda_si = self.lambda_t[si] | |
rk = (lambda_si - lambda_s0) / h | |
rks.append(rk) | |
D1s.append((mi - m0) / rk) | |
rks.append(1.0) | |
rks = torch.tensor(rks, device=device) | |
R = [] | |
b = [] | |
hh = -h if self.predict_x0 else h | |
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1 | |
h_phi_k = h_phi_1 / hh - 1 | |
factorial_i = 1 | |
if self.config.solver_type == "bh1": | |
B_h = hh | |
elif self.config.solver_type == "bh2": | |
B_h = torch.expm1(hh) | |
else: | |
raise NotImplementedError() | |
for i in range(1, order + 1): | |
R.append(torch.pow(rks, i - 1)) | |
b.append(h_phi_k * factorial_i / B_h) | |
factorial_i *= i + 1 | |
h_phi_k = h_phi_k / hh - 1 / factorial_i | |
R = torch.stack(R) | |
b = torch.tensor(b, device=device) | |
if len(D1s) > 0: | |
D1s = torch.stack(D1s, dim=1) | |
else: | |
D1s = None | |
# for order 1, we use a simplified version | |
if order == 1: | |
rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device) | |
else: | |
rhos_c = torch.linalg.solve(R, b) | |
if self.predict_x0: | |
x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0 | |
if D1s is not None: | |
corr_res = torch.einsum("k,bkchw->bchw", rhos_c[:-1], D1s) | |
else: | |
corr_res = 0 | |
D1_t = model_t - m0 | |
x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t) | |
else: | |
x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0 | |
if D1s is not None: | |
corr_res = torch.einsum("k,bkchw->bchw", rhos_c[:-1], D1s) | |
else: | |
corr_res = 0 | |
D1_t = model_t - m0 | |
x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t) | |
x_t = x_t.to(x.dtype) | |
return x_t | |
def step( | |
self, | |
model_output: torch.FloatTensor, | |
timestep: int, | |
sample: torch.FloatTensor, | |
return_dict: bool = True, | |
) -> Union[SchedulerOutput, Tuple]: | |
""" | |
Step function propagating the sample with the multistep UniPC. | |
Args: | |
model_output (`torch.FloatTensor`): direct output from learned diffusion model. | |
timestep (`int`): current discrete timestep in the diffusion chain. | |
sample (`torch.FloatTensor`): | |
current instance of sample being created by diffusion process. | |
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class | |
Returns: | |
[`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is | |
True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. | |
""" | |
if self.num_inference_steps is None: | |
raise ValueError( | |
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
) | |
if isinstance(timestep, torch.Tensor): | |
timestep = timestep.to(self.timesteps.device) | |
step_index = (self.timesteps == timestep).nonzero() | |
if len(step_index) == 0: | |
step_index = len(self.timesteps) - 1 | |
else: | |
step_index = step_index.item() | |
use_corrector = ( | |
step_index > 0 and step_index - 1 not in self.disable_corrector and self.last_sample is not None | |
) | |
model_output_convert = self.convert_model_output(model_output, timestep, sample) | |
if use_corrector: | |
sample = self.multistep_uni_c_bh_update( | |
this_model_output=model_output_convert, | |
this_timestep=timestep, | |
last_sample=self.last_sample, | |
this_sample=sample, | |
order=self.this_order, | |
) | |
# now prepare to run the predictor | |
prev_timestep = 0 if step_index == len(self.timesteps) - 1 else self.timesteps[step_index + 1] | |
for i in range(self.config.solver_order - 1): | |
self.model_outputs[i] = self.model_outputs[i + 1] | |
self.timestep_list[i] = self.timestep_list[i + 1] | |
self.model_outputs[-1] = model_output_convert | |
self.timestep_list[-1] = timestep | |
if self.config.lower_order_final: | |
this_order = min(self.config.solver_order, len(self.timesteps) - step_index) | |
else: | |
this_order = self.config.solver_order | |
self.this_order = min(this_order, self.lower_order_nums + 1) # warmup for multistep | |
assert self.this_order > 0 | |
self.last_sample = sample | |
prev_sample = self.multistep_uni_p_bh_update( | |
model_output=model_output, # pass the original non-converted model output, in case solver-p is used | |
prev_timestep=prev_timestep, | |
sample=sample, | |
order=self.this_order, | |
) | |
if self.lower_order_nums < self.config.solver_order: | |
self.lower_order_nums += 1 | |
if not return_dict: | |
return (prev_sample,) | |
return SchedulerOutput(prev_sample=prev_sample) | |
def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: | |
""" | |
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
current timestep. | |
Args: | |
sample (`torch.FloatTensor`): input sample | |
Returns: | |
`torch.FloatTensor`: scaled input sample | |
""" | |
return sample | |
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise | |
def add_noise( | |
self, | |
original_samples: torch.FloatTensor, | |
noise: torch.FloatTensor, | |
timesteps: torch.IntTensor, | |
) -> torch.FloatTensor: | |
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples | |
alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) | |
timesteps = timesteps.to(original_samples.device) | |
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 | |
sqrt_alpha_prod = sqrt_alpha_prod.flatten() | |
while len(sqrt_alpha_prod.shape) < len(original_samples.shape): | |
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) | |
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 | |
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() | |
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): | |
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) | |
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise | |
return noisy_samples | |
def __len__(self): | |
return self.config.num_train_timesteps | |