Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
import argparse | |
import copy | |
import logging | |
import math | |
import os | |
import shutil | |
from pathlib import Path | |
import einops | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
import transformers | |
from accelerate import Accelerator | |
from accelerate.logging import get_logger | |
from accelerate.utils import ProjectConfiguration, set_seed, DistributedDataParallelKwargs | |
from dataset import ObjaverseData | |
from huggingface_hub import create_repo, upload_folder | |
from packaging import version | |
from PIL import Image | |
from torchvision import transforms | |
from tqdm.auto import tqdm | |
from CN_encoder import CN_encoder | |
import diffusers | |
from diffusers import ( | |
AutoencoderKL, | |
DDIMScheduler, | |
DDPMScheduler, | |
# UNet2DConditionModel, | |
) | |
from unet_2d_condition import UNet2DConditionModel | |
from pipeline_zero1to3 import Zero1to3StableDiffusionPipeline | |
from diffusers.optimization import get_scheduler | |
from diffusers.utils import is_wandb_available | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.training_utils import EMAModel | |
import torchvision | |
import itertools | |
# metrics | |
import cv2 | |
from skimage.metrics import structural_similarity as calculate_ssim | |
import lpips | |
LPIPS = lpips.LPIPS(net='alex', version='0.1') | |
if is_wandb_available(): | |
import wandb | |
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
# check_min_version("0.19.0.dev0") | |
logger = get_logger(__name__) | |
def image_grid(imgs, rows, cols): | |
assert len(imgs) == rows * cols | |
w, h = imgs[0].size | |
grid = Image.new("RGB", size=(cols * w, rows * h)) | |
for i, img in enumerate(imgs): | |
grid.paste(img, box=(i % cols * w, i // cols * h)) | |
return grid | |
def log_validation(validation_dataloader, vae, image_encoder, feature_extractor, unet, args, accelerator, weight_dtype, split="val"): | |
logger.info("Running {} validation... ".format(split)) | |
scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
pipeline = Zero1to3StableDiffusionPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
vae=accelerator.unwrap_model(vae).eval(), | |
image_encoder=accelerator.unwrap_model(image_encoder).eval(), | |
feature_extractor=feature_extractor, | |
unet=accelerator.unwrap_model(unet).eval(), | |
scheduler=scheduler, | |
safety_checker=None, | |
torch_dtype=weight_dtype, | |
) | |
pipeline = pipeline.to(accelerator.device) | |
pipeline.set_progress_bar_config(disable=True) | |
if args.enable_xformers_memory_efficient_attention: | |
pipeline.enable_xformers_memory_efficient_attention() | |
if args.seed is None: | |
generator = None | |
else: | |
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) | |
image_logs = [] | |
val_lpips = 0 | |
val_ssim = 0 | |
val_psnr = 0 | |
val_loss = 0 | |
val_num = 0 | |
T_out = args.T_out # fix to be 1? | |
for T_in_val in [1, args.T_in_val//2, args.T_in_val]: # eval different number of given views | |
for valid_step, batch in tqdm(enumerate(validation_dataloader)): | |
if args.num_validation_batches is not None and valid_step >= args.num_validation_batches: | |
break | |
T_in = T_in_val | |
gt_image = batch["image_target"].to(dtype=weight_dtype) | |
input_image = batch["image_input"].to(dtype=weight_dtype)[:, :T_in] | |
pose_in = batch["pose_in"].to(dtype=weight_dtype)[:, :T_in] # BxTx4 | |
pose_out = batch["pose_out"].to(dtype=weight_dtype) # BxTx4 | |
pose_in_inv = batch["pose_in_inv"].to(dtype=weight_dtype)[:, :T_in] # BxTx4 | |
pose_out_inv = batch["pose_out_inv"].to(dtype=weight_dtype) # BxTx4 | |
gt_image = einops.rearrange(gt_image, 'b t c h w -> (b t) c h w', t=T_out) | |
input_image = einops.rearrange(input_image, 'b t c h w -> (b t) c h w', t=T_in) # T_in | |
images = [] | |
h, w = input_image.shape[2:] | |
for _ in range(args.num_validation_images): | |
with torch.autocast("cuda"): | |
image = pipeline(input_imgs=input_image, prompt_imgs=input_image, poses=[[pose_out, pose_out_inv], [pose_in, pose_in_inv]], height=h, width=w, T_in=T_in, T_out=pose_out.shape[1], | |
guidance_scale=args.guidance_scale, num_inference_steps=50, generator=generator, output_type="numpy").images | |
pred_image = torch.from_numpy(image * 2. - 1.).permute(0, 3, 1, 2) | |
images.append(pred_image) | |
pred_np = (image * 255).astype(np.uint8) # [0,1] | |
gt_np = (gt_image / 2 + 0.5).clamp(0, 1) | |
gt_np = (gt_np.cpu().permute(0, 2, 3, 1).float().numpy()*255).astype(np.uint8) | |
# for 1 image | |
# pixel loss | |
loss = F.mse_loss(pred_image[0], gt_image[0].cpu()).item() | |
# LPIPS | |
lpips = LPIPS(pred_image[0], gt_image[0].cpu()).item() # [-1, 1] torch tensor | |
# SSIM | |
ssim = calculate_ssim(pred_np[0], gt_np[0], channel_axis=2) | |
# PSNR | |
psnr = cv2.PSNR(gt_np[0], pred_np[0]) | |
val_loss += loss | |
val_lpips += lpips | |
val_ssim += ssim | |
val_psnr += psnr | |
val_num += 1 | |
image_logs.append( | |
{"gt_image": gt_image, "pred_images": images, "input_image": input_image} | |
) | |
pixel_loss = val_loss / val_num | |
pixel_lpips= val_lpips / val_num | |
pixel_ssim = val_ssim / val_num | |
pixel_psnr = val_psnr / val_num | |
for tracker in accelerator.trackers: | |
if tracker.name == "wandb": | |
# need to use table, wandb doesn't allow more than 108 images | |
assert args.num_validation_images == 2 | |
table = wandb.Table(columns=["Input", "GT", "Pred1", "Pred2"]) | |
for log_id, log in enumerate(image_logs): | |
formatted_images = [[], [], []] # [[input], [gt], [pred]] | |
pred_images = log["pred_images"] # pred | |
input_image = log["input_image"] # input | |
gt_image = log["gt_image"] # GT | |
formatted_images[0].append(wandb.Image(input_image, caption="{}_input".format(log_id))) | |
formatted_images[1].append(wandb.Image(gt_image, caption="{}_gt".format(log_id))) | |
for sample_id, pred_image in enumerate(pred_images): # n_samples | |
pred_image = wandb.Image(pred_image, caption="{}_pred_{}".format(log_id, sample_id)) | |
formatted_images[2].append(pred_image) | |
table.add_data(*formatted_images[0], *formatted_images[1], *formatted_images[2]) | |
tracker.log({split: table, # formatted_images | |
"{}_T{}_pixel_loss".format(split, T_in_val): pixel_loss, | |
"{}_T{}_lpips".format(split, T_in_val): pixel_lpips, | |
"{}_T{}_ssim".format(split, T_in_val): pixel_ssim, | |
"{}_T{}_psnr".format(split, T_in_val): pixel_psnr}) | |
else: | |
logger.warn(f"image logging not implemented for {tracker.name}") | |
# del pipeline | |
# torch.cuda.empty_cache() | |
# after validation, set the pipeline back to training mode | |
unet.train() | |
vae.eval() | |
image_encoder.train() | |
return image_logs | |
def parse_args(input_args=None): | |
parser = argparse.ArgumentParser(description="Simple example of a Zero123 training script.") | |
parser.add_argument( | |
"--pretrained_model_name_or_path", | |
type=str, | |
default="lambdalabs/sd-image-variations-diffusers", | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--revision", | |
type=str, | |
default=None, | |
required=False, | |
help=( | |
"Revision of pretrained model identifier from huggingface.co/models. Trainable model components should be" | |
" float32 precision." | |
), | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="eschernet-6dof", | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.") | |
parser.add_argument( | |
"--resolution", | |
type=int, | |
default=256, | |
help=( | |
"The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
" resolution" | |
), | |
) | |
parser.add_argument( | |
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." | |
) | |
parser.add_argument("--num_train_epochs", type=int, default=1) | |
parser.add_argument( | |
"--T_in", type=int, default=1, help="Number of input views" | |
) | |
parser.add_argument( | |
"--T_in_val", type=int, default=10, help="Number of input views" | |
) | |
parser.add_argument( | |
"--T_out", type=int, default=1, help="Number of output views" | |
) | |
parser.add_argument( | |
"--max_train_steps", | |
type=int, | |
default=100000, | |
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
) | |
parser.add_argument( | |
"--guidance_scale", | |
type=float, | |
default=3.0, | |
help="unconditional guidance scale, if guidance_scale>1.0, do_classifier_free_guidance" | |
) | |
parser.add_argument( | |
"--conditioning_dropout_prob", | |
type=float, | |
default=0.05, | |
help="Conditioning dropout probability. Drops out the conditionings (image and edit prompt) used in training InstructPix2Pix. See section 3.2.1 in the paper: https://arxiv.org/abs/2211.09800" | |
) | |
parser.add_argument( | |
"--checkpointing_steps", | |
type=int, | |
default=2000, | |
help=( | |
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. " | |
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference." | |
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components." | |
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step" | |
"instructions." | |
), | |
) | |
parser.add_argument( | |
"--checkpoints_total_limit", | |
type=int, | |
default=20, | |
help=("Max number of checkpoints to store."), | |
) | |
parser.add_argument( | |
"--resume_from_checkpoint", | |
type=str, | |
default=None, | |
help=( | |
"Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
), | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument( | |
"--gradient_checkpointing", | |
action="store_true", | |
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
) | |
parser.add_argument( | |
"--learning_rate", | |
type=float, | |
default=1e-4, | |
help="Initial learning rate (after the potential warmup period) to use.", | |
) | |
parser.add_argument( | |
"--scale_lr", | |
action="store_true", | |
default=False, | |
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
) | |
parser.add_argument( | |
"--lr_warmup_steps", type=int, default=1000, help="Number of steps for the warmup in the lr scheduler." | |
) | |
parser.add_argument( | |
"--lr_num_cycles", | |
type=int, | |
default=1, | |
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", | |
) | |
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") | |
parser.add_argument( | |
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." | |
) | |
parser.add_argument( | |
"--dataloader_num_workers", | |
type=int, | |
default=1, | |
help=( | |
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
), | |
) | |
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
parser.add_argument("--max_grad_norm", default=0.5, type=float, help="Max gradient norm.") | |
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
parser.add_argument( | |
"--hub_model_id", | |
type=str, | |
default=None, | |
help="The name of the repository to keep in sync with the local `output_dir`.", | |
) | |
parser.add_argument( | |
"--logging_dir", | |
type=str, | |
default="logs", | |
help=( | |
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
), | |
) | |
parser.add_argument( | |
"--allow_tf32", | |
action="store_true", | |
help=( | |
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
), | |
) | |
parser.add_argument( | |
"--report_to", | |
type=str, | |
default="wandb", # log_image currently only for wandb | |
help=( | |
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
), | |
) | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default=None, | |
choices=["no", "fp16", "bf16"], | |
help=( | |
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
), | |
) | |
parser.add_argument( | |
"--enable_xformers_memory_efficient_attention", default=True, help="Whether or not to use xformers." | |
) | |
parser.add_argument( | |
"--set_grads_to_none", | |
default=True, | |
help=( | |
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" | |
" behaviors, so disable this argument if it causes any problems. More info:" | |
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" | |
), | |
) | |
parser.add_argument( | |
"--dataset_name", | |
type=str, | |
default=None, | |
help=( | |
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," | |
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," | |
" or to a folder containing files that 🤗 Datasets can understand." | |
), | |
) | |
parser.add_argument( | |
"--dataset_config_name", | |
type=str, | |
default=None, | |
help="The config of the Dataset, leave as None if there's only one config.", | |
) | |
parser.add_argument( | |
"--train_data_dir", | |
type=str, | |
default=None, | |
help=( | |
"A folder containing the training data. Folder contents must follow the structure described in" | |
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" | |
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified." | |
), | |
) | |
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") | |
parser.add_argument( | |
"--num_validation_images", | |
type=int, | |
default=2, | |
help="Number of images to be generated for each `--validation_image`, `--validation_prompt` pair", | |
) | |
parser.add_argument( | |
"--validation_steps", | |
type=int, | |
default=2000, | |
help=( | |
"Run validation every X steps. Validation consists of running the prompt" | |
" `args.validation_prompt` multiple times: `args.num_validation_images`" | |
" and logging the images." | |
), | |
) | |
parser.add_argument( | |
"--num_validation_batches", | |
type=int, | |
default=20, | |
help=( | |
"Number of batches to use for validation. If `None`, use all batches." | |
), | |
) | |
parser.add_argument( | |
"--tracker_project_name", | |
type=str, | |
default="train_zero123_hf", | |
help=( | |
"The `project_name` argument passed to Accelerator.init_trackers for" | |
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" | |
), | |
) | |
if input_args is not None: | |
args = parser.parse_args(input_args) | |
else: | |
args = parser.parse_args() | |
if args.dataset_name is None and args.train_data_dir is None: | |
raise ValueError("Specify either `--dataset_name` or `--train_data_dir`") | |
if args.dataset_name is not None and args.train_data_dir is not None: | |
raise ValueError("Specify only one of `--dataset_name` or `--train_data_dir`") | |
if args.resolution % 8 != 0: | |
raise ValueError( | |
"`--resolution` must be divisible by 8 for consistently sized encoded images." | |
) | |
return args | |
ConvNextV2_preprocess = transforms.Compose([ | |
transforms.Resize((224, 224), interpolation=transforms.InterpolationMode.BICUBIC), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
def _encode_image(feature_extractor, image_encoder, image, device, dtype, do_classifier_free_guidance): | |
# [-1, 1] -> [0, 1] | |
image = (image + 1.) / 2. | |
image = ConvNextV2_preprocess(image) | |
image_embeddings = image_encoder(image) # bt, 768, 12, 12 | |
if do_classifier_free_guidance: | |
negative_prompt_embeds = torch.zeros_like(image_embeddings) | |
image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) | |
return image_embeddings #.detach() # !we need keep image encoder gradient | |
def main(args): | |
logging_dir = Path(args.output_dir, args.logging_dir) | |
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
accelerator = Accelerator( | |
gradient_accumulation_steps=args.gradient_accumulation_steps, | |
mixed_precision=args.mixed_precision, | |
log_with=args.report_to, | |
project_config=accelerator_project_config, | |
) | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
logger.info(accelerator.state, main_process_only=False) | |
if accelerator.is_local_main_process: | |
transformers.utils.logging.set_verbosity_warning() | |
diffusers.utils.logging.set_verbosity_info() | |
else: | |
transformers.utils.logging.set_verbosity_error() | |
diffusers.utils.logging.set_verbosity_error() | |
# If passed along, set the training seed now. | |
if args.seed is not None: | |
set_seed(args.seed) | |
# Handle the repository creation | |
if accelerator.is_main_process: | |
if args.output_dir is not None: | |
os.makedirs(args.output_dir, exist_ok=True) | |
if args.push_to_hub: | |
repo_id = create_repo( | |
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token, private=True | |
).repo_id | |
# Load scheduler and models | |
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler", revision=args.revision) | |
image_encoder = CN_encoder.from_pretrained("facebook/convnextv2-tiny-22k-224") | |
feature_extractor = None | |
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision) | |
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision) | |
T_in = args.T_in | |
T_in_val = args.T_in_val | |
T_out = args.T_out | |
vae.eval() | |
vae.requires_grad_(False) | |
image_encoder.train() | |
image_encoder.requires_grad_(True) | |
unet.requires_grad_(True) | |
unet.train() | |
# Create EMA for the unet. | |
if args.use_ema: | |
ema_unet = EMAModel(unet.parameters(), model_cls=UNet2DConditionModel, model_config=unet.config) | |
if args.enable_xformers_memory_efficient_attention: | |
if is_xformers_available(): | |
import xformers | |
xformers_version = version.parse(xformers.__version__) | |
if xformers_version == version.parse("0.0.16"): | |
logger.warn( | |
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
) | |
unet.enable_xformers_memory_efficient_attention() | |
vae.enable_slicing() | |
else: | |
raise ValueError("xformers is not available. Make sure it is installed correctly") | |
if args.gradient_checkpointing: | |
unet.enable_gradient_checkpointing() | |
# Check that all trainable models are in full precision | |
low_precision_error_string = ( | |
" Please make sure to always have all model weights in full float32 precision when starting training - even if" | |
" doing mixed precision training, copy of the weights should still be float32." | |
) | |
if accelerator.unwrap_model(unet).dtype != torch.float32: | |
raise ValueError( | |
f"UNet loaded as datatype {accelerator.unwrap_model(unet).dtype}. {low_precision_error_string}" | |
) | |
# Enable TF32 for faster training on Ampere GPUs, | |
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
if args.allow_tf32: | |
torch.backends.cuda.matmul.allow_tf32 = True | |
if args.scale_lr: | |
args.learning_rate = ( | |
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
) | |
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | |
if args.use_8bit_adam: | |
try: | |
import bitsandbytes as bnb | |
except ImportError: | |
raise ImportError( | |
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." | |
) | |
optimizer_class = bnb.optim.AdamW8bit | |
else: | |
optimizer_class = torch.optim.AdamW | |
optimizer = optimizer_class( | |
[{"params": unet.parameters(), "lr": args.learning_rate}, | |
{"params": image_encoder.parameters(), "lr": args.learning_rate}], | |
betas=(args.adam_beta1, args.adam_beta2), | |
weight_decay=args.adam_weight_decay, | |
eps=args.adam_epsilon | |
) | |
# print model info, learnable parameters, non-learnable parameters, total parameters, model size, all in billion | |
def print_model_info(model): | |
print("="*20) | |
# print model class name | |
print("model name: ", type(model).__name__) | |
print("learnable parameters(M): ", sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6) | |
print("non-learnable parameters(M): ", sum(p.numel() for p in model.parameters() if not p.requires_grad) / 1e6) | |
print("total parameters(M): ", sum(p.numel() for p in model.parameters()) / 1e6) | |
print("model size(MB): ", sum(p.numel() * p.element_size() for p in model.parameters()) / 1024 / 1024) | |
print_model_info(unet) | |
print_model_info(vae) | |
print_model_info(image_encoder) | |
# Init Dataset | |
image_transforms = torchvision.transforms.Compose( | |
[ | |
torchvision.transforms.Resize((args.resolution, args.resolution)), # 256, 256 | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]) | |
] | |
) | |
train_dataset = ObjaverseData(root_dir=args.train_data_dir, image_transforms=image_transforms, validation=False, T_in=T_in, T_out=T_out) | |
train_log_dataset = ObjaverseData(root_dir=args.train_data_dir, image_transforms=image_transforms, validation=False, T_in=T_in_val, T_out=T_out, fix_sample=True) | |
validation_dataset = ObjaverseData(root_dir=args.train_data_dir, image_transforms=image_transforms, validation=True, T_in=T_in_val, T_out=T_out, fix_sample=True) | |
# for training | |
train_dataloader = torch.utils.data.DataLoader( | |
train_dataset, | |
shuffle=True, | |
batch_size=args.train_batch_size, | |
num_workers=args.dataloader_num_workers, | |
) | |
# for validation set logs | |
validation_dataloader = torch.utils.data.DataLoader( | |
validation_dataset, | |
shuffle=False, | |
batch_size=1, | |
num_workers=1, | |
) | |
# for training set logs | |
train_log_dataloader = torch.utils.data.DataLoader( | |
train_log_dataset, | |
shuffle=False, | |
batch_size=1, | |
num_workers=1, | |
) | |
# Scheduler and math around the number of training steps. | |
overrode_max_train_steps = False | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if args.max_train_steps is None: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
overrode_max_train_steps = True | |
def warmup_lr_schedule(optimizer, step, max_step, init_lr, max_lr): | |
"""Warmup the learning rate""" | |
lr = min(max_lr, init_lr + (max_lr - init_lr) * step / max_step) | |
for param_group in optimizer.param_groups: | |
param_group['lr'] = lr | |
def cosine_lr_schedule(optimizer, epoch, max_epoch, init_lr, min_lr): | |
"""Decay the learning rate""" | |
lr = (init_lr - min_lr) * 0.5 * (1. + math.cos(math.pi * epoch / max_epoch)) + min_lr | |
for param_group in optimizer.param_groups: | |
param_group['lr'] = lr | |
# Prepare everything with our `accelerator`. | |
unet, image_encoder, optimizer, train_dataloader, validation_dataloader, train_log_dataloader = accelerator.prepare( | |
unet, image_encoder, optimizer, train_dataloader, validation_dataloader, train_log_dataloader | |
) | |
if args.use_ema: | |
ema_unet.to(accelerator.device) | |
# For mixed precision training we cast the text_encoder and vae weights to half-precision | |
# as these models are only used for inference, keeping weights in full precision is not required. | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
# Move vae, image_encoder to device and cast to weight_dtype | |
vae.to(accelerator.device, dtype=weight_dtype) | |
# We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if overrode_max_train_steps: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
# Afterwards we recalculate our number of training epochs | |
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
# We need to initialize the trackers we use, and also store our configuration. | |
# The trackers initializes automatically on the main process. | |
if accelerator.is_main_process: | |
tracker_config = dict(vars(args)) | |
run_name = args.output_dir.split("logs_")[1] | |
accelerator.init_trackers(args.tracker_project_name, config=tracker_config, init_kwargs={"wandb":{"name":run_name}}) | |
# Train! | |
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
do_classifier_free_guidance = args.guidance_scale > 1.0 | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {len(train_dataset)}") | |
logger.info(f" Num batches each epoch = {len(train_dataloader)}") | |
logger.info(f" Num Epochs = {args.num_train_epochs}") | |
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
logger.info(f" Total optimization steps = {args.max_train_steps}") | |
logger.info(f" do_classifier_free_guidance = {do_classifier_free_guidance}") | |
logger.info(f" conditioning_dropout_prob = {args.conditioning_dropout_prob}") | |
global_step = 0 | |
first_epoch = 0 | |
# Potentially load in the weights and states from a previous save | |
if args.resume_from_checkpoint: | |
if args.resume_from_checkpoint != "latest": | |
path = os.path.basename(args.resume_from_checkpoint) | |
else: | |
# Get the most recent checkpoint | |
dirs = os.listdir(args.output_dir) | |
dirs = [d for d in dirs if d.startswith("checkpoint")] | |
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
path = dirs[-1] if len(dirs) > 0 else None | |
if path is None: | |
accelerator.print( | |
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
) | |
args.resume_from_checkpoint = None | |
initial_global_step = 0 | |
else: | |
accelerator.print(f"Resuming from checkpoint {path}") | |
accelerator.load_state(os.path.join(args.output_dir, path)) | |
global_step = int(path.split("-")[1]) | |
initial_global_step = global_step | |
first_epoch = global_step // num_update_steps_per_epoch | |
else: | |
initial_global_step = 0 | |
progress_bar = tqdm( | |
range(0, args.max_train_steps), | |
initial=initial_global_step, | |
desc="Steps", | |
# Only show the progress bar once on each machine. | |
disable=not accelerator.is_local_main_process, | |
) | |
for epoch in range(first_epoch, args.num_train_epochs): | |
loss_epoch = 0.0 | |
num_train_elems = 0 | |
for step, batch in enumerate(train_dataloader): | |
with accelerator.accumulate(unet, image_encoder): | |
gt_image = batch["image_target"].to(dtype=weight_dtype) # BxTx3xHxW | |
gt_image = einops.rearrange(gt_image, 'b t c h w -> (b t) c h w', t=T_out) | |
input_image = batch["image_input"].to(dtype=weight_dtype) # Bx3xHxW | |
input_image = einops.rearrange(input_image, 'b t c h w -> (b t) c h w', t=T_in) | |
pose_in = batch["pose_in"].to(dtype=weight_dtype) # BxTx4 | |
pose_out = batch["pose_out"].to(dtype=weight_dtype) # BxTx4 | |
pose_in_inv = batch["pose_in_inv"].to(dtype=weight_dtype) # BxTx4 | |
pose_out_inv = batch["pose_out_inv"].to(dtype=weight_dtype) # BxTx4 | |
gt_latents = vae.encode(gt_image).latent_dist.sample().detach() | |
gt_latents = gt_latents * vae.config.scaling_factor # follow zero123, only target image latent is scaled | |
# Sample noise that we'll add to the latents | |
bsz = gt_latents.shape[0] // T_out | |
noise = torch.randn_like(gt_latents) | |
# Sample a random timestep for each image | |
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=gt_latents.device) | |
timesteps = timesteps.long() | |
timesteps = einops.repeat(timesteps, 'b -> (b t)', t=T_out) | |
# Add noise to the latents according to the noise magnitude at each timestep | |
# (this is the forward diffusion process) | |
noisy_latents = noise_scheduler.add_noise(gt_latents.to(dtype=torch.float32), noise.to(dtype=torch.float32), timesteps).to(dtype=gt_latents.dtype) | |
if do_classifier_free_guidance: #support classifier-free guidance, randomly drop out 5% | |
# Conditioning dropout to support classifier-free guidance during inference. For more details | |
# check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.09800. | |
random_p = torch.rand(bsz, device=gt_latents.device) | |
# Sample masks for the edit prompts. | |
prompt_mask = random_p < 2 * args.conditioning_dropout_prob | |
prompt_mask = prompt_mask.reshape(bsz, 1, 1, 1) | |
img_prompt_embeds = _encode_image(feature_extractor, image_encoder, input_image, gt_latents.device, gt_latents.dtype, False) | |
# Final text conditioning. | |
img_prompt_embeds = einops.rearrange(img_prompt_embeds, '(b t) l c -> b t l c', t=T_in) | |
null_conditioning = torch.zeros_like(img_prompt_embeds).detach() | |
img_prompt_embeds = torch.where(prompt_mask, null_conditioning, img_prompt_embeds) | |
img_prompt_embeds = einops.rearrange(img_prompt_embeds, 'b t l c -> (b t) l c', t=T_in) | |
prompt_embeds = torch.cat([img_prompt_embeds], dim=-1) | |
else: | |
# Get the image_with_pose embedding for conditioning | |
prompt_embeds = _encode_image(feature_extractor, image_encoder, input_image, gt_latents.device, gt_latents.dtype, False) | |
prompt_embeds = einops.rearrange(prompt_embeds, '(b t) l c -> b (t l) c', t=T_in) | |
# noisy_latents (b T_out) | |
latent_model_input = torch.cat([noisy_latents], dim=1) | |
# Predict the noise residual | |
model_pred = unet( | |
latent_model_input, | |
timesteps, | |
encoder_hidden_states=prompt_embeds, # (bxT_in) l 768 | |
pose=[[pose_out, pose_out_inv], [pose_in, pose_in_inv]], # (bxT_in) 4, pose_out - self-attn, pose_in - cross-attn | |
).sample | |
# Get the target for loss depending on the prediction type | |
if noise_scheduler.config.prediction_type == "epsilon": | |
target = noise | |
elif noise_scheduler.config.prediction_type == "v_prediction": | |
target = noise_scheduler.get_velocity(gt_latents, noise, timesteps) | |
else: | |
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") | |
loss = (loss.mean([1, 2, 3])).mean() | |
accelerator.backward(loss) | |
if accelerator.sync_gradients: | |
params_to_clip = itertools.chain(unet.parameters(), image_encoder.parameters()) | |
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
optimizer.step() | |
# cosine | |
if global_step <= args.lr_warmup_steps: | |
warmup_lr_schedule(optimizer, global_step, args.lr_warmup_steps, 1e-5, args.learning_rate) | |
else: | |
cosine_lr_schedule(optimizer, global_step, args.max_train_steps, args.learning_rate, 1e-5) | |
optimizer.zero_grad(set_to_none=args.set_grads_to_none) | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
if args.use_ema: | |
ema_unet.step(unet.parameters()) | |
progress_bar.update(1) | |
global_step += 1 | |
if accelerator.is_main_process: | |
if global_step % args.checkpointing_steps == 0: | |
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
if args.checkpoints_total_limit is not None: | |
checkpoints = os.listdir(args.output_dir) | |
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
if len(checkpoints) >= args.checkpoints_total_limit: | |
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
removing_checkpoints = checkpoints[0:num_to_remove] | |
logger.info( | |
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
) | |
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
for removing_checkpoint in removing_checkpoints: | |
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
shutil.rmtree(removing_checkpoint) | |
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
accelerator.save_state(save_path) | |
logger.info(f"Saved state to {save_path}") | |
# save pipeline | |
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
if args.checkpoints_total_limit is not None: | |
pipelines = os.listdir(args.output_dir) | |
pipelines = [d for d in pipelines if d.startswith("pipeline")] | |
pipelines = sorted(pipelines, key=lambda x: int(x.split("-")[1])) | |
# before we save the new pipeline, we need to have at _most_ `checkpoints_total_limit - 1` pipeline | |
if len(pipelines) >= args.checkpoints_total_limit: | |
num_to_remove = len(pipelines) - args.checkpoints_total_limit + 1 | |
removing_pipelines = pipelines[0:num_to_remove] | |
logger.info( | |
f"{len(pipelines)} pipelines already exist, removing {len(removing_pipelines)} pipelines" | |
) | |
logger.info(f"removing pipelines: {', '.join(removing_pipelines)}") | |
for removing_pipeline in removing_pipelines: | |
removing_pipeline = os.path.join(args.output_dir, removing_pipeline) | |
shutil.rmtree(removing_pipeline) | |
if args.use_ema: | |
# Store the UNet parameters temporarily and load the EMA parameters to perform inference. | |
ema_unet.store(unet.parameters()) | |
ema_unet.copy_to(unet.parameters()) | |
pipeline = Zero1to3StableDiffusionPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
vae=accelerator.unwrap_model(vae), | |
image_encoder=accelerator.unwrap_model(image_encoder), | |
feature_extractor=feature_extractor, | |
unet=accelerator.unwrap_model(unet), | |
scheduler=noise_scheduler, | |
safety_checker=None, | |
torch_dtype=torch.float32, | |
) | |
pipeline_save_path = os.path.join(args.output_dir, f"pipeline-{global_step}") | |
pipeline.save_pretrained(pipeline_save_path) | |
# del pipeline | |
if args.push_to_hub: | |
print("Pushing to the hub ", repo_id) | |
upload_folder( | |
repo_id=repo_id, | |
folder_path=pipeline_save_path, | |
commit_message=global_step, | |
ignore_patterns=["step_*", "epoch_*"], | |
run_as_future=True, | |
) | |
if args.use_ema: | |
# Switch back to the original UNet parameters. | |
ema_unet.restore(unet.parameters()) | |
if validation_dataloader is not None and global_step % args.validation_steps == 0: | |
if args.use_ema: | |
# Store the UNet parameters temporarily and load the EMA parameters to perform inference. | |
ema_unet.store(unet.parameters()) | |
ema_unet.copy_to(unet.parameters()) | |
image_logs = log_validation( | |
validation_dataloader, | |
vae, | |
image_encoder, | |
feature_extractor, | |
unet, | |
args, | |
accelerator, | |
weight_dtype, | |
'val', | |
) | |
if args.use_ema: | |
# Switch back to the original UNet parameters. | |
ema_unet.restore(unet.parameters()) | |
if train_log_dataloader is not None and (global_step % args.validation_steps == 0 or global_step == 1): | |
if args.use_ema: | |
# Store the UNet parameters temporarily and load the EMA parameters to perform inference. | |
ema_unet.store(unet.parameters()) | |
ema_unet.copy_to(unet.parameters()) | |
train_image_logs = log_validation( | |
train_log_dataloader, | |
vae, | |
image_encoder, | |
feature_extractor, | |
unet, | |
args, | |
accelerator, | |
weight_dtype, | |
'train', | |
) | |
if args.use_ema: | |
# Switch back to the original UNet parameters. | |
ema_unet.restore(unet.parameters()) | |
loss_epoch += loss.detach().item() | |
num_train_elems += 1 | |
logs = {"loss": loss.detach().item(), "lr": optimizer.param_groups[0]['lr'], | |
"loss_epoch": loss_epoch / num_train_elems, | |
"epoch": epoch} | |
progress_bar.set_postfix(**logs) | |
accelerator.log(logs, step=global_step) | |
if global_step >= args.max_train_steps: | |
break | |
# Create the pipeline using using the trained modules and save it. | |
accelerator.wait_for_everyone() | |
if accelerator.is_main_process: | |
unet = accelerator.unwrap_model(unet) | |
if args.use_ema: | |
ema_unet.copy_to(unet.parameters()) | |
pipeline = Zero1to3StableDiffusionPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
vae=accelerator.unwrap_model(vae), | |
image_encoder=accelerator.unwrap_model(image_encoder), | |
feature_extractor=feature_extractor, | |
unet=unet, | |
scheduler=noise_scheduler, | |
safety_checker=None, | |
torch_dtype=torch.float32, | |
) | |
pipeline_save_path = os.path.join(args.output_dir, f"pipeline-{global_step}") | |
pipeline.save_pretrained(pipeline_save_path) | |
if args.push_to_hub: | |
upload_folder( | |
repo_id=repo_id, | |
folder_path=pipeline_save_path, | |
commit_message="End of training", | |
ignore_patterns=["step_*", "epoch_*"], | |
) | |
accelerator.end_training() | |
if __name__ == "__main__": | |
# torch.multiprocessing.set_sharing_strategy("file_system") | |
args = parse_args() | |
main(args) | |