kxhit
update
5f093a6
raw
history blame
7.23 kB
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# utilitary functions about images (loading/converting...)
# --------------------------------------------------------
import os
import torch
import numpy as np
import PIL.Image
from PIL.ImageOps import exif_transpose
import torchvision.transforms as tvf
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
import cv2 # noqa
import rembg
rembg_session = rembg.new_session()
import time
from PIL import Image
from rembg import remove
from segment_anything import sam_model_registry, SamPredictor
def sam_init():
sam_checkpoint = os.path.join("./sam_pt/sam_vit_h_4b8939.pth")
if os.path.exists(sam_checkpoint) is False:
os.system("wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth -P ./sam_pt/")
model_type = "vit_h"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=f"cuda:{0 if torch.cuda.is_available() else 'cpu'}")
predictor = SamPredictor(sam)
return predictor
def sam_segment(predictor, input_image, *bbox_coords):
bbox = np.array(bbox_coords)
image = np.asarray(input_image)
start_time = time.time()
predictor.set_image(image)
masks_bbox, scores_bbox, logits_bbox = predictor.predict(
box=bbox,
multimask_output=True
)
print(f"SAM Time: {time.time() - start_time:.3f}s")
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
out_image[:, :, :3] = image
out_image_bbox = out_image.copy()
out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255
torch.cuda.empty_cache()
return Image.fromarray(out_image_bbox, mode='RGBA')
predictor = sam_init()
try:
from pillow_heif import register_heif_opener # noqa
register_heif_opener()
heif_support_enabled = True
except ImportError:
heif_support_enabled = False
ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
def imread_cv2(path, options=cv2.IMREAD_COLOR):
""" Open an image or a depthmap with opencv-python.
"""
if path.endswith(('.exr', 'EXR')):
options = cv2.IMREAD_ANYDEPTH
img = cv2.imread(path, options)
if img is None:
raise IOError(f'Could not load image={path} with {options=}')
if img.ndim == 3:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
def rgb(ftensor, true_shape=None):
if isinstance(ftensor, list):
return [rgb(x, true_shape=true_shape) for x in ftensor]
if isinstance(ftensor, torch.Tensor):
ftensor = ftensor.detach().cpu().numpy() # H,W,3
if ftensor.ndim == 3 and ftensor.shape[0] == 3:
ftensor = ftensor.transpose(1, 2, 0)
elif ftensor.ndim == 4 and ftensor.shape[1] == 3:
ftensor = ftensor.transpose(0, 2, 3, 1)
if true_shape is not None:
H, W = true_shape
ftensor = ftensor[:H, :W]
if ftensor.dtype == np.uint8:
img = np.float32(ftensor) / 255
else:
img = (ftensor * 0.5) + 0.5
return img.clip(min=0, max=1)
def _resize_pil_image(img, long_edge_size):
S = max(img.size)
if S > long_edge_size:
interp = PIL.Image.LANCZOS
elif S <= long_edge_size:
interp = PIL.Image.BICUBIC
new_size = tuple(int(round(x*long_edge_size/S)) for x in img.size)
return img.resize(new_size, interp)
def load_images(folder_or_list, size, square_ok=False, verbose=True, do_remove_background=True, rembg_session=None):
""" open and convert all images in a list or folder to proper input format for DUSt3R
"""
if isinstance(folder_or_list, str):
if verbose:
print(f'>> Loading images from {folder_or_list}')
root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list))
elif isinstance(folder_or_list, list):
if verbose:
print(f'>> Loading a list of {len(folder_or_list)} images')
root, folder_content = '', folder_or_list
else:
raise ValueError(f'bad {folder_or_list=} ({type(folder_or_list)})')
supported_images_extensions = ['.jpg', '.jpeg', '.png']
if heif_support_enabled:
supported_images_extensions += ['.heic', '.heif']
supported_images_extensions = tuple(supported_images_extensions)
imgs = []
imgs_rgba = []
for path in folder_content:
if not path.lower().endswith(supported_images_extensions):
continue
img = exif_transpose(PIL.Image.open(os.path.join(root, path))).convert('RGB')
# remove background if needed
if do_remove_background:
# if rembg_session is None:
# rembg_session = rembg.new_session()
# image = rembg.remove(img, session=rembg_session)
# foreground = np.array(image)[..., -1] > 127
image_nobg = remove(img, alpha_matting=True, session=rembg_session)
arr = np.asarray(image_nobg)[:, :, -1]
x_nonzero = np.nonzero(arr.sum(axis=0))
y_nonzero = np.nonzero(arr.sum(axis=1))
x_min = int(x_nonzero[0].min())
y_min = int(y_nonzero[0].min())
x_max = int(x_nonzero[0].max())
y_max = int(y_nonzero[0].max())
input_image = sam_segment(predictor, img.convert('RGB'), x_min, y_min, x_max, y_max)
foreground = np.array(input_image)[..., -1] > 127
else:
foreground = img[..., -1] > 127
W1, H1 = img.size
if size == 224:
# resize short side to 224 (then crop)
img = _resize_pil_image(img, round(size * max(W1/H1, H1/W1)))
# resize foreground mask
foreground = cv2.resize(foreground.astype(np.uint8), img.size, interpolation=cv2.INTER_NEAREST)
else:
# resize long side to 512
img = _resize_pil_image(img, size)
# resize foreground mask
foreground = cv2.resize(foreground.astype(np.uint8), img.size, interpolation=cv2.INTER_NEAREST)
W, H = img.size
cx, cy = W//2, H//2
if size == 224:
half = min(cx, cy)
img = img.crop((cx-half, cy-half, cx+half, cy+half))
# foreground crop
foreground = foreground[cy-half:cy+half, cx-half:cx+half]
else:
halfw, halfh = ((2*cx)//16)*8, ((2*cy)//16)*8
if not (square_ok) and W == H:
halfh = 3*halfw/4
img = img.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh))
# foreground crop
foreground = foreground[cy-halfh:cy+halfh, cx-halfw:cx+halfw]
W2, H2 = img.size
if verbose:
print(f' - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}')
imgs.append(dict(img=ImgNorm(img)[None], true_shape=np.int32(
[img.size[::-1]]), idx=len(imgs), instance=str(len(imgs))))
imgs_rgba.append(PIL.Image.fromarray((255*np.concatenate([np.array(img)/255.0, foreground[..., None]], axis=-1)).astype(np.uint8)))
assert imgs, 'no images foud at '+root
if verbose:
print(f' (Found {len(imgs)} images)')
return imgs, imgs_rgba