Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from ..configuration_utils import ConfigMixin, register_to_config | |
from ..utils import BaseOutput, logging | |
from .attention_processor import AttentionProcessor, AttnProcessor | |
from .embeddings import TimestepEmbedding, Timesteps | |
from .modeling_utils import ModelMixin | |
from .unet_2d_blocks import ( | |
CrossAttnDownBlock2D, | |
DownBlock2D, | |
UNetMidBlock2DCrossAttn, | |
get_down_block, | |
) | |
from .unet_2d_condition import UNet2DConditionModel | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class ControlNetOutput(BaseOutput): | |
""" | |
The output of [`ControlNetModel`]. | |
Args: | |
down_block_res_samples (`tuple[torch.Tensor]`): | |
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should | |
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be | |
used to condition the original UNet's downsampling activations. | |
mid_down_block_re_sample (`torch.Tensor`): | |
The activation of the midde block (the lowest sample resolution). Each tensor should be of shape | |
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`. | |
Output can be used to condition the original UNet's middle block activation. | |
""" | |
down_block_res_samples: Tuple[torch.Tensor] | |
mid_block_res_sample: torch.Tensor | |
class ControlNetConditioningEmbedding(nn.Module): | |
""" | |
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN | |
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized | |
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the | |
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides | |
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full | |
model) to encode image-space conditions ... into feature maps ..." | |
""" | |
def __init__( | |
self, | |
conditioning_embedding_channels: int, | |
conditioning_channels: int = 3, | |
block_out_channels: Tuple[int] = (16, 32, 96, 256), | |
): | |
super().__init__() | |
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1) | |
self.blocks = nn.ModuleList([]) | |
for i in range(len(block_out_channels) - 1): | |
channel_in = block_out_channels[i] | |
channel_out = block_out_channels[i + 1] | |
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1)) | |
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)) | |
self.conv_out = zero_module( | |
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1) | |
) | |
def forward(self, conditioning): | |
embedding = self.conv_in(conditioning) | |
embedding = F.silu(embedding) | |
for block in self.blocks: | |
embedding = block(embedding) | |
embedding = F.silu(embedding) | |
embedding = self.conv_out(embedding) | |
return embedding | |
class ControlNetModel(ModelMixin, ConfigMixin): | |
""" | |
A ControlNet model. | |
Args: | |
in_channels (`int`, defaults to 4): | |
The number of channels in the input sample. | |
flip_sin_to_cos (`bool`, defaults to `True`): | |
Whether to flip the sin to cos in the time embedding. | |
freq_shift (`int`, defaults to 0): | |
The frequency shift to apply to the time embedding. | |
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): | |
The tuple of downsample blocks to use. | |
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`): | |
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`): | |
The tuple of output channels for each block. | |
layers_per_block (`int`, defaults to 2): | |
The number of layers per block. | |
downsample_padding (`int`, defaults to 1): | |
The padding to use for the downsampling convolution. | |
mid_block_scale_factor (`float`, defaults to 1): | |
The scale factor to use for the mid block. | |
act_fn (`str`, defaults to "silu"): | |
The activation function to use. | |
norm_num_groups (`int`, *optional*, defaults to 32): | |
The number of groups to use for the normalization. If None, normalization and activation layers is skipped | |
in post-processing. | |
norm_eps (`float`, defaults to 1e-5): | |
The epsilon to use for the normalization. | |
cross_attention_dim (`int`, defaults to 1280): | |
The dimension of the cross attention features. | |
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8): | |
The dimension of the attention heads. | |
use_linear_projection (`bool`, defaults to `False`): | |
class_embed_type (`str`, *optional*, defaults to `None`): | |
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None, | |
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`. | |
num_class_embeds (`int`, *optional*, defaults to 0): | |
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing | |
class conditioning with `class_embed_type` equal to `None`. | |
upcast_attention (`bool`, defaults to `False`): | |
resnet_time_scale_shift (`str`, defaults to `"default"`): | |
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`. | |
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`): | |
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when | |
`class_embed_type="projection"`. | |
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`): | |
The channel order of conditional image. Will convert to `rgb` if it's `bgr`. | |
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`): | |
The tuple of output channel for each block in the `conditioning_embedding` layer. | |
global_pool_conditions (`bool`, defaults to `False`): | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
in_channels: int = 4, | |
conditioning_channels: int = 3, | |
flip_sin_to_cos: bool = True, | |
freq_shift: int = 0, | |
down_block_types: Tuple[str] = ( | |
"CrossAttnDownBlock2D", | |
"CrossAttnDownBlock2D", | |
"CrossAttnDownBlock2D", | |
"DownBlock2D", | |
), | |
only_cross_attention: Union[bool, Tuple[bool]] = False, | |
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
layers_per_block: int = 2, | |
downsample_padding: int = 1, | |
mid_block_scale_factor: float = 1, | |
act_fn: str = "silu", | |
norm_num_groups: Optional[int] = 32, | |
norm_eps: float = 1e-5, | |
cross_attention_dim: int = 1280, | |
attention_head_dim: Union[int, Tuple[int]] = 8, | |
num_attention_heads: Optional[Union[int, Tuple[int]]] = None, | |
use_linear_projection: bool = False, | |
class_embed_type: Optional[str] = None, | |
num_class_embeds: Optional[int] = None, | |
upcast_attention: bool = False, | |
resnet_time_scale_shift: str = "default", | |
projection_class_embeddings_input_dim: Optional[int] = None, | |
controlnet_conditioning_channel_order: str = "rgb", | |
conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256), | |
global_pool_conditions: bool = False, | |
): | |
super().__init__() | |
# If `num_attention_heads` is not defined (which is the case for most models) | |
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is. | |
# The reason for this behavior is to correct for incorrectly named variables that were introduced | |
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 | |
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking | |
# which is why we correct for the naming here. | |
num_attention_heads = num_attention_heads or attention_head_dim | |
# Check inputs | |
if len(block_out_channels) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." | |
) | |
# input | |
conv_in_kernel = 3 | |
conv_in_padding = (conv_in_kernel - 1) // 2 | |
self.conv_in = nn.Conv2d( | |
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding | |
) | |
# time | |
time_embed_dim = block_out_channels[0] * 4 | |
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) | |
timestep_input_dim = block_out_channels[0] | |
self.time_embedding = TimestepEmbedding( | |
timestep_input_dim, | |
time_embed_dim, | |
act_fn=act_fn, | |
) | |
# class embedding | |
if class_embed_type is None and num_class_embeds is not None: | |
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) | |
elif class_embed_type == "timestep": | |
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) | |
elif class_embed_type == "identity": | |
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) | |
elif class_embed_type == "projection": | |
if projection_class_embeddings_input_dim is None: | |
raise ValueError( | |
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" | |
) | |
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except | |
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings | |
# 2. it projects from an arbitrary input dimension. | |
# | |
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations. | |
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings. | |
# As a result, `TimestepEmbedding` can be passed arbitrary vectors. | |
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) | |
else: | |
self.class_embedding = None | |
# control net conditioning embedding | |
self.controlnet_cond_embedding = ControlNetConditioningEmbedding( | |
conditioning_embedding_channels=block_out_channels[0], | |
block_out_channels=conditioning_embedding_out_channels, | |
conditioning_channels=conditioning_channels, | |
) | |
self.down_blocks = nn.ModuleList([]) | |
self.controlnet_down_blocks = nn.ModuleList([]) | |
if isinstance(only_cross_attention, bool): | |
only_cross_attention = [only_cross_attention] * len(down_block_types) | |
if isinstance(attention_head_dim, int): | |
attention_head_dim = (attention_head_dim,) * len(down_block_types) | |
if isinstance(num_attention_heads, int): | |
num_attention_heads = (num_attention_heads,) * len(down_block_types) | |
# down | |
output_channel = block_out_channels[0] | |
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) | |
controlnet_block = zero_module(controlnet_block) | |
self.controlnet_down_blocks.append(controlnet_block) | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=layers_per_block, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
temb_channels=time_embed_dim, | |
add_downsample=not is_final_block, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim, | |
num_attention_heads=num_attention_heads[i], | |
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, | |
downsample_padding=downsample_padding, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention[i], | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
self.down_blocks.append(down_block) | |
for _ in range(layers_per_block): | |
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) | |
controlnet_block = zero_module(controlnet_block) | |
self.controlnet_down_blocks.append(controlnet_block) | |
if not is_final_block: | |
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) | |
controlnet_block = zero_module(controlnet_block) | |
self.controlnet_down_blocks.append(controlnet_block) | |
# mid | |
mid_block_channel = block_out_channels[-1] | |
controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1) | |
controlnet_block = zero_module(controlnet_block) | |
self.controlnet_mid_block = controlnet_block | |
self.mid_block = UNetMidBlock2DCrossAttn( | |
in_channels=mid_block_channel, | |
temb_channels=time_embed_dim, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
output_scale_factor=mid_block_scale_factor, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
cross_attention_dim=cross_attention_dim, | |
num_attention_heads=num_attention_heads[-1], | |
resnet_groups=norm_num_groups, | |
use_linear_projection=use_linear_projection, | |
upcast_attention=upcast_attention, | |
) | |
def from_unet( | |
cls, | |
unet: UNet2DConditionModel, | |
controlnet_conditioning_channel_order: str = "rgb", | |
conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256), | |
load_weights_from_unet: bool = True, | |
): | |
r""" | |
Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`]. | |
Parameters: | |
unet (`UNet2DConditionModel`): | |
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied | |
where applicable. | |
""" | |
controlnet = cls( | |
in_channels=unet.config.in_channels, | |
flip_sin_to_cos=unet.config.flip_sin_to_cos, | |
freq_shift=unet.config.freq_shift, | |
down_block_types=unet.config.down_block_types, | |
only_cross_attention=unet.config.only_cross_attention, | |
block_out_channels=unet.config.block_out_channels, | |
layers_per_block=unet.config.layers_per_block, | |
downsample_padding=unet.config.downsample_padding, | |
mid_block_scale_factor=unet.config.mid_block_scale_factor, | |
act_fn=unet.config.act_fn, | |
norm_num_groups=unet.config.norm_num_groups, | |
norm_eps=unet.config.norm_eps, | |
cross_attention_dim=unet.config.cross_attention_dim, | |
attention_head_dim=unet.config.attention_head_dim, | |
num_attention_heads=unet.config.num_attention_heads, | |
use_linear_projection=unet.config.use_linear_projection, | |
class_embed_type=unet.config.class_embed_type, | |
num_class_embeds=unet.config.num_class_embeds, | |
upcast_attention=unet.config.upcast_attention, | |
resnet_time_scale_shift=unet.config.resnet_time_scale_shift, | |
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim, | |
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order, | |
conditioning_embedding_out_channels=conditioning_embedding_out_channels, | |
) | |
if load_weights_from_unet: | |
controlnet.conv_in.load_state_dict(unet.conv_in.state_dict()) | |
controlnet.time_proj.load_state_dict(unet.time_proj.state_dict()) | |
controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict()) | |
if controlnet.class_embedding: | |
controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict()) | |
controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict()) | |
controlnet.mid_block.load_state_dict(unet.mid_block.state_dict()) | |
return controlnet | |
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, "set_processor"): | |
processors[f"{name}.processor"] = module.processor | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor | |
def set_default_attn_processor(self): | |
""" | |
Disables custom attention processors and sets the default attention implementation. | |
""" | |
self.set_attn_processor(AttnProcessor()) | |
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice | |
def set_attention_slice(self, slice_size): | |
r""" | |
Enable sliced attention computation. | |
When this option is enabled, the attention module splits the input tensor in slices to compute attention in | |
several steps. This is useful for saving some memory in exchange for a small decrease in speed. | |
Args: | |
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): | |
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If | |
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is | |
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` | |
must be a multiple of `slice_size`. | |
""" | |
sliceable_head_dims = [] | |
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): | |
if hasattr(module, "set_attention_slice"): | |
sliceable_head_dims.append(module.sliceable_head_dim) | |
for child in module.children(): | |
fn_recursive_retrieve_sliceable_dims(child) | |
# retrieve number of attention layers | |
for module in self.children(): | |
fn_recursive_retrieve_sliceable_dims(module) | |
num_sliceable_layers = len(sliceable_head_dims) | |
if slice_size == "auto": | |
# half the attention head size is usually a good trade-off between | |
# speed and memory | |
slice_size = [dim // 2 for dim in sliceable_head_dims] | |
elif slice_size == "max": | |
# make smallest slice possible | |
slice_size = num_sliceable_layers * [1] | |
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size | |
if len(slice_size) != len(sliceable_head_dims): | |
raise ValueError( | |
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" | |
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." | |
) | |
for i in range(len(slice_size)): | |
size = slice_size[i] | |
dim = sliceable_head_dims[i] | |
if size is not None and size > dim: | |
raise ValueError(f"size {size} has to be smaller or equal to {dim}.") | |
# Recursively walk through all the children. | |
# Any children which exposes the set_attention_slice method | |
# gets the message | |
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): | |
if hasattr(module, "set_attention_slice"): | |
module.set_attention_slice(slice_size.pop()) | |
for child in module.children(): | |
fn_recursive_set_attention_slice(child, slice_size) | |
reversed_slice_size = list(reversed(slice_size)) | |
for module in self.children(): | |
fn_recursive_set_attention_slice(module, reversed_slice_size) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)): | |
module.gradient_checkpointing = value | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
encoder_hidden_states: torch.Tensor, | |
controlnet_cond: torch.FloatTensor, | |
conditioning_scale: float = 1.0, | |
class_labels: Optional[torch.Tensor] = None, | |
timestep_cond: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
guess_mode: bool = False, | |
return_dict: bool = True, | |
) -> Union[ControlNetOutput, Tuple]: | |
""" | |
The [`ControlNetModel`] forward method. | |
Args: | |
sample (`torch.FloatTensor`): | |
The noisy input tensor. | |
timestep (`Union[torch.Tensor, float, int]`): | |
The number of timesteps to denoise an input. | |
encoder_hidden_states (`torch.Tensor`): | |
The encoder hidden states. | |
controlnet_cond (`torch.FloatTensor`): | |
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. | |
conditioning_scale (`float`, defaults to `1.0`): | |
The scale factor for ControlNet outputs. | |
class_labels (`torch.Tensor`, *optional*, defaults to `None`): | |
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. | |
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`): | |
attention_mask (`torch.Tensor`, *optional*, defaults to `None`): | |
cross_attention_kwargs(`dict[str]`, *optional*, defaults to `None`): | |
A kwargs dictionary that if specified is passed along to the `AttnProcessor`. | |
guess_mode (`bool`, defaults to `False`): | |
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if | |
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended. | |
return_dict (`bool`, defaults to `True`): | |
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.controlnet.ControlNetOutput`] **or** `tuple`: | |
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is | |
returned where the first element is the sample tensor. | |
""" | |
# check channel order | |
channel_order = self.config.controlnet_conditioning_channel_order | |
if channel_order == "rgb": | |
# in rgb order by default | |
... | |
elif channel_order == "bgr": | |
controlnet_cond = torch.flip(controlnet_cond, dims=[1]) | |
else: | |
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}") | |
# prepare attention_mask | |
if attention_mask is not None: | |
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
attention_mask = attention_mask.unsqueeze(1) | |
# 1. time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = sample.device.type == "mps" | |
if isinstance(timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
elif len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timesteps = timesteps.expand(sample.shape[0]) | |
t_emb = self.time_proj(timesteps) | |
# timesteps does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=sample.dtype) | |
emb = self.time_embedding(t_emb, timestep_cond) | |
if self.class_embedding is not None: | |
if class_labels is None: | |
raise ValueError("class_labels should be provided when num_class_embeds > 0") | |
if self.config.class_embed_type == "timestep": | |
class_labels = self.time_proj(class_labels) | |
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) | |
emb = emb + class_emb | |
# 2. pre-process | |
sample = self.conv_in(sample) | |
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond) | |
sample = sample + controlnet_cond | |
# 3. down | |
down_block_res_samples = (sample,) | |
for downsample_block in self.down_blocks: | |
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
) | |
else: | |
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
down_block_res_samples += res_samples | |
# 4. mid | |
if self.mid_block is not None: | |
sample = self.mid_block( | |
sample, | |
emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
) | |
# 5. Control net blocks | |
controlnet_down_block_res_samples = () | |
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks): | |
down_block_res_sample = controlnet_block(down_block_res_sample) | |
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,) | |
down_block_res_samples = controlnet_down_block_res_samples | |
mid_block_res_sample = self.controlnet_mid_block(sample) | |
# 6. scaling | |
if guess_mode and not self.config.global_pool_conditions: | |
scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0 | |
scales = scales * conditioning_scale | |
down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)] | |
mid_block_res_sample = mid_block_res_sample * scales[-1] # last one | |
else: | |
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples] | |
mid_block_res_sample = mid_block_res_sample * conditioning_scale | |
if self.config.global_pool_conditions: | |
down_block_res_samples = [ | |
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples | |
] | |
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True) | |
if not return_dict: | |
return (down_block_res_samples, mid_block_res_sample) | |
return ControlNetOutput( | |
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample | |
) | |
def zero_module(module): | |
for p in module.parameters(): | |
nn.init.zeros_(p) | |
return module | |