Spaces:
Sleeping
Sleeping
import argparse | |
import os | |
import random | |
import io | |
from PIL import Image | |
import numpy as np | |
import torch | |
import torch.backends.cudnn as cudnn | |
from typing import List | |
from minigpt4.common.config import Config | |
from minigpt4.common.dist_utils import get_rank | |
from minigpt4.common.registry import registry | |
from minigpt4.conversation.conversation import Chat, CONV_VISION | |
from fastapi import FastAPI, HTTPException, File, UploadFile, Form | |
from fastapi.responses import RedirectResponse | |
from fastapi.middleware.cors import CORSMiddleware | |
from pydantic import BaseModel | |
from PIL import Image | |
import io | |
import uvicorn | |
# imports modules for registration | |
from minigpt4.datasets.builders import * | |
from minigpt4.models import * | |
from minigpt4.processors import * | |
from minigpt4.runners import * | |
from minigpt4.tasks import * | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Demo") | |
parser.add_argument("--cfg-path", type=str, default='eval_configs/minigpt4_eval.yaml', | |
help="path to configuration file.") | |
parser.add_argument( | |
"--options", | |
nargs="+", | |
help="override some settings in the used config, the key-value pair " | |
"in xxx=yyy format will be merged into config file (deprecate), " | |
"change to --cfg-options instead.", | |
) | |
args = parser.parse_args() | |
return args | |
def setup_seeds(config): | |
seed = config.run_cfg.seed + get_rank() | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
cudnn.benchmark = False | |
cudnn.deterministic = True | |
# ======================================== | |
# Model Initialization | |
# ======================================== | |
SHARED_UI_WARNING = f'''### [NOTE] It is possible that you are waiting in a lengthy queue. | |
You can duplicate and use it with a paid private GPU. | |
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/Vision-CAIR/minigpt4?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-xl-dark.svg" alt="Duplicate Space"></a> | |
Alternatively, you can also use the demo on our [project page](https://minigpt-4.github.io). | |
''' | |
print('Initializing Chat') | |
cfg = Config(parse_args()) | |
model_config = cfg.model_cfg | |
model_cls = registry.get_model_class(model_config.arch) | |
model = model_cls.from_config(model_config).to('cuda:0') | |
vis_processor_cfg = cfg.datasets_cfg.cc_align.vis_processor.train | |
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg) | |
chat = Chat(model, vis_processor) | |
print('Initialization Finished') | |
# ======================================== | |
# Gradio Setting | |
# ======================================== | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], # Replace "*" with your frontend domain | |
allow_credentials=True, | |
allow_methods=["GET", "POST"], | |
allow_headers=["*"], | |
) | |
class Item(BaseModel): | |
gr_img: UploadFile = File(..., description="Image file") | |
text_input: str = None | |
chat_state = CONV_VISION.copy() | |
img_list = [] | |
chatbot = [] | |
async def root(): | |
return RedirectResponse(url="/docs") | |
async def upload_img( | |
file: UploadFile = File(...), | |
): | |
pil_image = Image.open(io.BytesIO(await file.read())) | |
chat.upload_img(pil_image, chat_state, img_list) | |
return {"message": "image uploaded successfully."} | |
async def process_item(prompts: List[str] = Form(...)): | |
if not img_list: # Check if img_list is empty or None | |
raise HTTPException(status_code=400, detail="No images uploaded.") | |
global chatbot | |
responses = [] | |
for prompt in prompts: | |
# Process each prompt individually | |
chat.ask(prompt, chat_state) | |
chatbot.append([prompt, None]) | |
llm_message = chat.answer(conv=chat_state, img_list=img_list, max_new_tokens=300, num_beams=1, temperature=1, max_length=2000)[0] | |
chatbot[-1][1] = llm_message | |
responses.append({ | |
"prompt": prompt, | |
"response": llm_message | |
}) | |
return responses | |
async def reset( | |
): | |
global chat_state, img_list, chatbot # Use global keyword to reassign | |
img_list = [] | |
if chat_state is not None: | |
chat_state.messages = [] | |
if img_list is not None: | |
img_list = [] | |
if chatbot is not None: | |
chatbot = [] | |
if __name__ == "__main__": | |
# Run the FastAPI app with Uvicorn | |
uvicorn.run("main:app", host="0.0.0.0", port=7860) |