Spaces:
Runtime error
Runtime error
| import argparse | |
| import os | |
| import random | |
| import io | |
| from PIL import Image | |
| import numpy as np | |
| import torch | |
| import torch.backends.cudnn as cudnn | |
| from typing import List | |
| from minigpt4.common.config import Config | |
| from minigpt4.common.dist_utils import get_rank | |
| from minigpt4.common.registry import registry | |
| from minigpt4.conversation.conversation import Chat, CONV_VISION | |
| from fastapi import FastAPI, HTTPException, File, UploadFile, Form | |
| from fastapi.responses import RedirectResponse | |
| from fastapi.middleware.cors import CORSMiddleware | |
| from pydantic import BaseModel | |
| from PIL import Image | |
| import io | |
| import uvicorn | |
| # imports modules for registration | |
| from minigpt4.datasets.builders import * | |
| from minigpt4.models import * | |
| from minigpt4.processors import * | |
| from minigpt4.runners import * | |
| from minigpt4.tasks import * | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description="Demo") | |
| parser.add_argument("--cfg-path", type=str, default='eval_configs/minigpt4_eval.yaml', | |
| help="path to configuration file.") | |
| parser.add_argument( | |
| "--options", | |
| nargs="+", | |
| help="override some settings in the used config, the key-value pair " | |
| "in xxx=yyy format will be merged into config file (deprecate), " | |
| "change to --cfg-options instead.", | |
| ) | |
| args = parser.parse_args() | |
| return args | |
| def setup_seeds(config): | |
| seed = config.run_cfg.seed + get_rank() | |
| random.seed(seed) | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| cudnn.benchmark = False | |
| cudnn.deterministic = True | |
| # ======================================== | |
| # Model Initialization | |
| # ======================================== | |
| SHARED_UI_WARNING = f'''### [NOTE] It is possible that you are waiting in a lengthy queue. | |
| You can duplicate and use it with a paid private GPU. | |
| <a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/Vision-CAIR/minigpt4?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-xl-dark.svg" alt="Duplicate Space"></a> | |
| Alternatively, you can also use the demo on our [project page](https://minigpt-4.github.io). | |
| ''' | |
| print('Initializing Chat') | |
| cfg = Config(parse_args()) | |
| model_config = cfg.model_cfg | |
| model_cls = registry.get_model_class(model_config.arch) | |
| model = model_cls.from_config(model_config).to('cuda:0') | |
| vis_processor_cfg = cfg.datasets_cfg.cc_align.vis_processor.train | |
| vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg) | |
| chat = Chat(model, vis_processor) | |
| print('Initialization Finished') | |
| # ======================================== | |
| # Gradio Setting | |
| # ======================================== | |
| app = FastAPI() | |
| app.add_middleware( | |
| CORSMiddleware, | |
| allow_origins=["*"], # Replace "*" with your frontend domain | |
| allow_credentials=True, | |
| allow_methods=["GET", "POST"], | |
| allow_headers=["*"], | |
| ) | |
| class Item(BaseModel): | |
| gr_img: UploadFile = File(..., description="Image file") | |
| text_input: str = None | |
| chat_state = CONV_VISION.copy() | |
| img_list = [] | |
| chatbot = [] | |
| async def root(): | |
| return RedirectResponse(url="/docs") | |
| async def upload_img( | |
| file: UploadFile = File(...), | |
| ): | |
| pil_image = Image.open(io.BytesIO(await file.read())) | |
| chat.upload_img(pil_image, chat_state, img_list) | |
| return {"message": "image uploaded successfully."} | |
| async def process_item(prompts: List[str] = Form(...)): | |
| if not img_list: # Check if img_list is empty or None | |
| raise HTTPException(status_code=400, detail="No images uploaded.") | |
| global chatbot | |
| responses = [] | |
| for prompt in prompts: | |
| # Process each prompt individually | |
| chat.ask(prompt, chat_state) | |
| chatbot.append([prompt, None]) | |
| llm_message = chat.answer(conv=chat_state, img_list=img_list, max_new_tokens=300, num_beams=1, temperature=1, max_length=2000)[0] | |
| chatbot[-1][1] = llm_message | |
| responses.append({ | |
| "prompt": prompt, | |
| "response": llm_message | |
| }) | |
| return responses | |
| async def reset( | |
| ): | |
| global chat_state, img_list, chatbot # Use global keyword to reassign | |
| img_list = [] | |
| if chat_state is not None: | |
| chat_state.messages = [] | |
| if img_list is not None: | |
| img_list = [] | |
| if chatbot is not None: | |
| chatbot = [] | |
| if __name__ == "__main__": | |
| # Run the FastAPI app with Uvicorn | |
| uvicorn.run("main:app", host="0.0.0.0", port=7860) |