unography commited on
Commit
8c03de9
·
verified ·
1 Parent(s): a122b76

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -1
app.py CHANGED
@@ -7,6 +7,7 @@ import PIL.Image
7
  import spaces
8
  import torch
9
  from transformers import AutoProcessor, BlipForConditionalGeneration
 
10
 
11
  DESCRIPTION = "# Image Captioning with LongCap"
12
 
@@ -16,9 +17,18 @@ model_id = "unography/blip-long-cap"
16
  processor = AutoProcessor.from_pretrained(model_id)
17
  model = BlipForConditionalGeneration.from_pretrained(model_id).to(device)
18
 
 
 
 
 
 
 
 
19
 
20
  @spaces.GPU(duration=30)
21
- def run(image: PIL.Image.Image) -> str:
 
 
22
  inputs = processor(images=image, return_tensors="pt").to(device)
23
  out = model.generate(pixel_values=inputs.pixel_values, num_beams=3, max_length=300)
24
  generated_caption = processor.decode(out[0], skip_special_tokens=True)
@@ -30,6 +40,17 @@ with gr.Blocks(css="style.css") as demo:
30
  input_image = gr.Image(type="pil")
31
  run_button = gr.Button("Caption")
32
  output = gr.Textbox(label="Result")
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  run_button.click(
35
  fn=run,
 
7
  import spaces
8
  import torch
9
  from transformers import AutoProcessor, BlipForConditionalGeneration
10
+ from typing import Union
11
 
12
  DESCRIPTION = "# Image Captioning with LongCap"
13
 
 
17
  processor = AutoProcessor.from_pretrained(model_id)
18
  model = BlipForConditionalGeneration.from_pretrained(model_id).to(device)
19
 
20
+ torch.hub.download_url_to_file("http://images.cocodataset.org/val2017/000000039769.jpg", "cats.jpg")
21
+ torch.hub.download_url_to_file(
22
+ "https://huggingface.co/datasets/nielsr/textcaps-sample/resolve/main/stop_sign.png", "stop_sign.png"
23
+ )
24
+ torch.hub.download_url_to_file(
25
+ "https://cdn.openai.com/dall-e-2/demos/text2im/astronaut/horse/photo/0.jpg", "astronaut.jpg"
26
+ )
27
 
28
  @spaces.GPU(duration=30)
29
+ def run(image: Union[str, PIL.Image.Image]) -> str:
30
+ if isinstance(image, str):
31
+ image = Image.open(image)
32
  inputs = processor(images=image, return_tensors="pt").to(device)
33
  out = model.generate(pixel_values=inputs.pixel_values, num_beams=3, max_length=300)
34
  generated_caption = processor.decode(out[0], skip_special_tokens=True)
 
40
  input_image = gr.Image(type="pil")
41
  run_button = gr.Button("Caption")
42
  output = gr.Textbox(label="Result")
43
+ gr.Examples(
44
+ examples=[
45
+ "cats.jpg",
46
+ "stop_sign.png",
47
+ "astronaut.jpg",
48
+ ],
49
+ inputs=input_image,
50
+ outputs=output,
51
+ fn=run,
52
+ cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
53
+ )
54
 
55
  run_button.click(
56
  fn=run,