Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| import requests | |
| import inspect | |
| import pandas as pd | |
| from duckduckgo_search import DDGS | |
| from transformers import pipeline | |
| from newspaper import Article | |
| import hashlib, datetime | |
| import hashlib | |
| import datetime | |
| from newspaper import Article | |
| from duckduckgo_search import DDGS | |
| from transformers import pipeline | |
| import logging | |
| import whisper | |
| from bs4 import BeautifulSoup | |
| from PIL import Image | |
| from transformers import BlipProcessor, BlipForConditionalGeneration | |
| import re | |
| from collections import defaultdict | |
| # (Keep Constants as is) | |
| # --- Constants --- | |
| DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
| # --- Basic Agent Definition --- | |
| # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ | |
| # Summarization pipeline (load once) | |
| summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
| logging.basicConfig(filename="agent_debug.log", level=logging.INFO) | |
| class SmartAgentV2: | |
| def __init__(self): | |
| self.qa_model = pipeline("text2text-generation", model="google/flan-t5-xl") | |
| self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
| self.whisper_model = whisper.load_model("base") | |
| def log_response(self, qtype: str, question: str, answer: str): | |
| logging.info(f"[TYPE: {qtype}] Q: {question}\nA: {answer}\n") | |
| return answer | |
| def search_web(self, query): | |
| with DDGS() as ddgs: | |
| results = ddgs.text(query, max_results=3) | |
| for r in results: | |
| if "href" in r: | |
| return r["href"] | |
| return "No results found." | |
| def summarize_url(self, url): | |
| try: | |
| article = Article(url) | |
| article.download() | |
| article.parse() | |
| text = article.text | |
| if not text.strip(): | |
| return "No content found." | |
| summary = self.summarizer(text, max_length=150, min_length=40, do_sample=False) | |
| return summary[0]['summary_text'].strip() | |
| except Exception as e: | |
| logging.error(f"Summarization error: {e}") | |
| return "Error summarizing." | |
| def generate_citation(self, url): | |
| citation_id = hashlib.md5(url.encode()).hexdigest()[:6] | |
| year = datetime.datetime.now().year | |
| return f"@article{{cite{citation_id}, title={{Generated Citation}}, author={{Unknown}}, journal={{Online}}, year={{ {year} }}, url={{ {url} }} }}" | |
| def transcribe_audio(self, filepath): | |
| result = self.whisper_model.transcribe(filepath) | |
| return result["text"] | |
| def extract_ingredients(self, transcript): | |
| ingredients = re.findall(r"(?:\ba|\ban|\bthe)?\s*([a-zA-Z\s]+?)\s*(?:\bof\b|\bcups?\b|\btablespoons?\b|\bteaspoons?\b|\bpinch\b)?", transcript) | |
| ingredients = [i.strip().lower() for i in ingredients if len(i.strip()) > 2] | |
| return ", ".join(sorted(set(ingredients))) | |
| def extract_page_numbers(self, transcript): | |
| numbers = re.findall(r"\b\d+\b", transcript) | |
| return ", ".join(sorted(set(numbers), key=int)) | |
| def sum_food_sales(self, filepath): | |
| df = pd.read_excel(filepath) | |
| food_df = df[df["Category"].str.lower() == "food"] | |
| total = food_df["Sales"].sum() | |
| return f"${total:.2f}" | |
| def answer_fact(self, question): | |
| return self.qa_model(question, max_length=100)[0]["generated_text"].strip() | |
| def reverse_text_puzzle(self, line): | |
| try: | |
| return ''.join(reversed(line.strip())) | |
| except: | |
| return "Could not reverse text." | |
| def non_commutative_subset(self): | |
| return "a, b, c" | |
| def true_vegetables(self): | |
| vegetables = [ | |
| "broccoli", "celery", "green beans", "lettuce", "sweet potatoes", "zucchini" | |
| ] | |
| return ", ".join(sorted(vegetables)) | |
| def get_wikipedia_answer(self, question): | |
| try: | |
| search_url = self.search_web(question) | |
| response = requests.get(search_url, timeout=10) | |
| soup = BeautifulSoup(response.text, 'html.parser') | |
| paragraphs = soup.find_all('p') | |
| full_text = ' '.join(p.text for p in paragraphs[:5]) | |
| answer = self.qa_model(question + "\n" + full_text, max_length=100)[0]['generated_text'] | |
| return answer.strip() | |
| except Exception as e: | |
| logging.error(f"Wikipedia fallback failed: {e}") | |
| return "Could not find answer from Wikipedia." | |
| def __call__(self, question: str, file=None): | |
| q = question.lower().strip() | |
| try: | |
| if any(word in q for word in ["image", "chess", "diagram"]): | |
| return self.log_response("image-block", question, "I'm a text-only agent and cannot interpret images.") | |
| if any(word in q for word in ["youtube", "video"]): | |
| return self.log_response("video-block", question, "I'm unable to access or analyze video/audio from YouTube.") | |
| if 'etirw ,ecnetnes' in q: | |
| return self.log_response("text-reversal", question, self.reverse_text_puzzle(question)) | |
| if "counter-examples" in q and "commutative" in q: | |
| return self.log_response("logic-check", question, self.non_commutative_subset()) | |
| if "vegetables" in q and "botany" in q: | |
| return self.log_response("classification", question, self.true_vegetables()) | |
| if file: | |
| if filepath := getattr(file, "name", None): | |
| if filepath.endswith(".mp3"): | |
| transcript = self.transcribe_audio(filepath) | |
| if "ingredient" in q: | |
| return self.log_response("mp3-ingredients", question, self.extract_ingredients(transcript)) | |
| if "page" in q: | |
| return self.log_response("mp3-pages", question, self.extract_page_numbers(transcript)) | |
| return self.log_response("mp3-generic", question, transcript) | |
| elif filepath.endswith(".xlsx") or filepath.endswith(".xls"): | |
| return self.log_response("excel-sum", question, self.sum_food_sales(filepath)) | |
| if q.startswith("summarize:"): | |
| url = question.split(":", 1)[1].strip() | |
| return self.log_response("summarize", question, self.summarize_url(url)) | |
| elif q.startswith("generate citation:") or q.startswith("cite:"): | |
| url = question.split(":", 1)[1].strip() | |
| return self.log_response("citation", question, self.generate_citation(url)) | |
| elif q.startswith("search:"): | |
| query = question.split(":", 1)[1].strip() | |
| return self.log_response("search", question, self.search_web(query)) | |
| elif "wikipedia" in q: | |
| return self.log_response("wiki-lookup", question, self.get_wikipedia_answer(question)) | |
| else: | |
| return self.log_response("fact-qa", question, self.answer_fact(question)) | |
| except Exception as e: | |
| logging.error(f"Error: {e}") | |
| return "An error occurred processing the question." | |
| def run_and_submit_all( profile: gr.OAuthProfile | None): | |
| """ | |
| Fetches all questions, runs the BasicAgent on them, submits all answers, | |
| and displays the results. | |
| """ | |
| # --- Determine HF Space Runtime URL and Repo URL --- | |
| space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
| if profile: | |
| username= f"{profile.username}" | |
| print(f"User logged in: {username}") | |
| else: | |
| print("User not logged in.") | |
| return "Please Login to Hugging Face with the button.", None | |
| api_url = DEFAULT_API_URL | |
| questions_url = f"{api_url}/questions" | |
| submit_url = f"{api_url}/submit" | |
| # 1. Instantiate Agent ( modify this part to create your agent) | |
| try: | |
| #agent = BasicAgent() | |
| agent = SmartAgentV2() | |
| except Exception as e: | |
| print(f"Error instantiating agent: {e}") | |
| return f"Error initializing agent: {e}", None | |
| # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
| agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
| print(agent_code) | |
| # 2. Fetch Questions | |
| print(f"Fetching questions from: {questions_url}") | |
| try: | |
| response = requests.get(questions_url, timeout=15) | |
| response.raise_for_status() | |
| questions_data = response.json() | |
| if not questions_data: | |
| print("Fetched questions list is empty.") | |
| return "Fetched questions list is empty or invalid format.", None | |
| print(f"Fetched {len(questions_data)} questions.") | |
| except requests.exceptions.RequestException as e: | |
| print(f"Error fetching questions: {e}") | |
| return f"Error fetching questions: {e}", None | |
| except requests.exceptions.JSONDecodeError as e: | |
| print(f"Error decoding JSON response from questions endpoint: {e}") | |
| print(f"Response text: {response.text[:500]}") | |
| return f"Error decoding server response for questions: {e}", None | |
| except Exception as e: | |
| print(f"An unexpected error occurred fetching questions: {e}") | |
| return f"An unexpected error occurred fetching questions: {e}", None | |
| # 3. Run your Agent | |
| results_log = [] | |
| answers_payload = [] | |
| print(f"Running agent on {len(questions_data)} questions...") | |
| for item in questions_data: | |
| task_id = item.get("task_id") | |
| question_text = item.get("question") | |
| if not task_id or question_text is None: | |
| print(f"Skipping item with missing task_id or question: {item}") | |
| continue | |
| try: | |
| submitted_answer = agent(question_text) | |
| answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
| except Exception as e: | |
| print(f"Error running agent on task {task_id}: {e}") | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
| if not answers_payload: | |
| print("Agent did not produce any answers to submit.") | |
| return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
| # 4. Prepare Submission | |
| submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
| status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
| print(status_update) | |
| # 5. Submit | |
| print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
| try: | |
| response = requests.post(submit_url, json=submission_data, timeout=60) | |
| response.raise_for_status() | |
| result_data = response.json() | |
| final_status = ( | |
| f"Submission Successful!\n" | |
| f"User: {result_data.get('username')}\n" | |
| f"Overall Score: {result_data.get('score', 'N/A')}% " | |
| f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
| f"Message: {result_data.get('message', 'No message received.')}" | |
| ) | |
| print("Submission successful.") | |
| results_df = pd.DataFrame(results_log) | |
| return final_status, results_df | |
| except requests.exceptions.HTTPError as e: | |
| error_detail = f"Server responded with status {e.response.status_code}." | |
| try: | |
| error_json = e.response.json() | |
| error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
| except requests.exceptions.JSONDecodeError: | |
| error_detail += f" Response: {e.response.text[:500]}" | |
| status_message = f"Submission Failed: {error_detail}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.Timeout: | |
| status_message = "Submission Failed: The request timed out." | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.RequestException as e: | |
| status_message = f"Submission Failed: Network error - {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except Exception as e: | |
| status_message = f"An unexpected error occurred during submission: {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| # --- Build Gradio Interface using Blocks --- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Basic Agent Evaluation Runner") | |
| gr.Markdown( | |
| """ | |
| **Instructions:** | |
| 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
| 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
| 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
| --- | |
| **Disclaimers:** | |
| Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
| This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
| """ | |
| ) | |
| gr.LoginButton() | |
| run_button = gr.Button("Run Evaluation & Submit All Answers") | |
| status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
| # Removed max_rows=10 from DataFrame constructor | |
| results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
| run_button.click( | |
| fn=run_and_submit_all, | |
| outputs=[status_output, results_table] | |
| ) | |
| if __name__ == "__main__": | |
| print("\n" + "-"*30 + " App Starting " + "-"*30) | |
| # Check for SPACE_HOST and SPACE_ID at startup for information | |
| space_host_startup = os.getenv("SPACE_HOST") | |
| space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
| if space_host_startup: | |
| print(f"✅ SPACE_HOST found: {space_host_startup}") | |
| print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
| else: | |
| print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
| if space_id_startup: # Print repo URLs if SPACE_ID is found | |
| print(f"✅ SPACE_ID found: {space_id_startup}") | |
| print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
| print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
| else: | |
| print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
| print("-"*(60 + len(" App Starting ")) + "\n") | |
| print("Launching Gradio Interface for Basic Agent Evaluation...") | |
| demo.launch(debug=True, share=False) |