Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -44,18 +44,9 @@ snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife")
|
|
| 44 |
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16).to("cpu")
|
| 45 |
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
| 46 |
|
| 47 |
-
|
| 48 |
-
"THUDM/CogVideoX-5b-I2V",
|
| 49 |
-
|
| 50 |
-
"THUDM/CogVideoX-5b-I2V", subfolder="transformer", torch_dtype=torch.bfloat16
|
| 51 |
-
),
|
| 52 |
-
vae=pipe.vae,
|
| 53 |
-
scheduler=pipe.scheduler,
|
| 54 |
-
tokenizer=pipe.tokenizer,
|
| 55 |
-
text_encoder=pipe.text_encoder,
|
| 56 |
-
torch_dtype=torch.bfloat16,
|
| 57 |
-
).to("cpu")
|
| 58 |
-
|
| 59 |
|
| 60 |
# pipe.transformer.to(memory_format=torch.channels_last)
|
| 61 |
# pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
|
@@ -241,11 +232,20 @@ def infer(
|
|
| 241 |
guidance_scale=guidance_scale,
|
| 242 |
generator=torch.Generator(device="cpu").manual_seed(seed),
|
| 243 |
).frames
|
|
|
|
| 244 |
del pipe_video
|
| 245 |
gc.collect()
|
| 246 |
torch.cuda.empty_cache()
|
| 247 |
elif image_input is not None:
|
| 248 |
-
pipe_image.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
image_input = Image.fromarray(image_input).resize(size=(720, 480)) # Convert to PIL
|
| 250 |
image = load_image(image_input)
|
| 251 |
video_pt = pipe_image(
|
|
@@ -259,7 +259,9 @@ def infer(
|
|
| 259 |
generator=torch.Generator(device="cpu").manual_seed(seed),
|
| 260 |
).frames
|
| 261 |
pipe_image.to("cpu")
|
|
|
|
| 262 |
gc.collect()
|
|
|
|
| 263 |
else:
|
| 264 |
pipe.to(device)
|
| 265 |
video_pt = pipe(
|
|
|
|
| 44 |
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16).to("cpu")
|
| 45 |
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
| 46 |
|
| 47 |
+
i2v_transformer = CogVideoXTransformer3DModel.from_pretrained(
|
| 48 |
+
"THUDM/CogVideoX-5b-I2V", subfolder="transformer", torch_dtype=torch.bfloat16
|
| 49 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
# pipe.transformer.to(memory_format=torch.channels_last)
|
| 52 |
# pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
|
|
|
| 232 |
guidance_scale=guidance_scale,
|
| 233 |
generator=torch.Generator(device="cpu").manual_seed(seed),
|
| 234 |
).frames
|
| 235 |
+
pipe_video.to("cpu")
|
| 236 |
del pipe_video
|
| 237 |
gc.collect()
|
| 238 |
torch.cuda.empty_cache()
|
| 239 |
elif image_input is not None:
|
| 240 |
+
pipe_image = CogVideoXImageToVideoPipeline.from_pretrained(
|
| 241 |
+
"THUDM/CogVideoX-5b-I2V",
|
| 242 |
+
transformer=i2v_transformer,
|
| 243 |
+
vae=pipe.vae,
|
| 244 |
+
scheduler=pipe.scheduler,
|
| 245 |
+
tokenizer=pipe.tokenizer,
|
| 246 |
+
text_encoder=pipe.text_encoder,
|
| 247 |
+
torch_dtype=torch.bfloat16,
|
| 248 |
+
).to(device)
|
| 249 |
image_input = Image.fromarray(image_input).resize(size=(720, 480)) # Convert to PIL
|
| 250 |
image = load_image(image_input)
|
| 251 |
video_pt = pipe_image(
|
|
|
|
| 259 |
generator=torch.Generator(device="cpu").manual_seed(seed),
|
| 260 |
).frames
|
| 261 |
pipe_image.to("cpu")
|
| 262 |
+
del pipe_image
|
| 263 |
gc.collect()
|
| 264 |
+
torch.cuda.empty_cache()
|
| 265 |
else:
|
| 266 |
pipe.to(device)
|
| 267 |
video_pt = pipe(
|