jiang
init commit
650c5f6

A newer version of the Gradio SDK is available: 5.6.0

Upgrade

Finetuning RoBERTa on GLUE tasks

1) Download the data from GLUE website (https://gluebenchmark.com/tasks) using following commands:

wget https://gist.githubusercontent.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e/raw/17b8dd0d724281ed7c3b2aeeda662b92809aadd5/download_glue_data.py
python download_glue_data.py --data_dir glue_data --tasks all

2) Preprocess GLUE task data:

./examples/roberta/preprocess_GLUE_tasks.sh glue_data <glue_task_name>

glue_task_name is one of the following: {ALL, QQP, MNLI, QNLI, MRPC, RTE, STS-B, SST-2, CoLA} Use ALL for preprocessing all the glue tasks.

3) Fine-tuning on GLUE task:

Example fine-tuning cmd for RTE task

ROBERTA_PATH=/path/to/roberta/model.pt

CUDA_VISIBLE_DEVICES=0 fairseq-hydra-train -config-dir examples/roberta/config/finetuning --config-name rte \
task.data=RTE-bin checkpoint.restore_file=$ROBERTA_PATH

There are additional config files for each of the GLUE tasks in the examples/roberta/config/finetuning directory.

Note:

a) Above cmd-args and hyperparams are tested on one Nvidia V100 GPU with 32gb of memory for each task. Depending on the GPU memory resources available to you, you can use increase --update-freq and reduce --batch-size.

b) All the settings in above table are suggested settings based on our hyperparam search within a fixed search space (for careful comparison across models). You might be able to find better metrics with wider hyperparam search.

Inference on GLUE task

After training the model as mentioned in previous step, you can perform inference with checkpoints in checkpoints/ directory using following python code snippet:

from fairseq.models.roberta import RobertaModel

roberta = RobertaModel.from_pretrained(
    'checkpoints/',
    checkpoint_file='checkpoint_best.pt',
    data_name_or_path='RTE-bin'
)

label_fn = lambda label: roberta.task.label_dictionary.string(
    [label + roberta.task.label_dictionary.nspecial]
)
ncorrect, nsamples = 0, 0
roberta.cuda()
roberta.eval()
with open('glue_data/RTE/dev.tsv') as fin:
    fin.readline()
    for index, line in enumerate(fin):
        tokens = line.strip().split('\t')
        sent1, sent2, target = tokens[1], tokens[2], tokens[3]
        tokens = roberta.encode(sent1, sent2)
        prediction = roberta.predict('sentence_classification_head', tokens).argmax().item()
        prediction_label = label_fn(prediction)
        ncorrect += int(prediction_label == target)
        nsamples += 1
print('| Accuracy: ', float(ncorrect)/float(nsamples))