Spaces:
Running
Unsupervised Quality Estimation for Neural Machine Translation (Fomicheva et al., 2020)
This page includes instructions for reproducing results from the paper Unsupervised Quality Estimation for Neural Machine Translation (Fomicheva et al., 2020)
Requirements:
- mosesdecoder: https://github.com/moses-smt/mosesdecoder
- subword-nmt: https://github.com/rsennrich/subword-nmt
- flores: https://github.com/facebookresearch/flores
Download Models and Test Data
Download translation models and test data from MLQE dataset repository.
Set up:
Given a testset consisting of source sentences and reference translations:
SRC_LANG
: source languageTGT_LANG
: target languageINPUT
: input prefix, such that the file$INPUT.$SRC_LANG
contains source sentences and$INPUT.$TGT_LANG
contains the reference sentencesOUTPUT_DIR
: output path to store resultsMOSES_DECODER
: path to mosesdecoder installationBPE_ROOT
: path to subword-nmt installationBPE
: path to BPE modelMODEL_DIR
: directory containing the NMT model.pt
file as well as the source and target vocabularies.TMP
: directory for intermediate temporary filesGPU
: if translating with GPU, id of the GPU to use for inferenceDROPOUT_N
: number of stochastic forward passes
$DROPOUT_N
is set to 30 in the experiments reported in the paper. However, we observed that increasing it beyond 10
does not bring substantial improvements.
Translate the data using standard decoding
Preprocess the input data:
for LANG in $SRC_LANG $TGT_LANG; do
perl $MOSES_DECODER/scripts/tokenizer/tokenizer.perl -threads 80 -a -l $LANG < $INPUT.$LANG > $TMP/preprocessed.tok.$LANG
python $BPE_ROOT/apply_bpe.py -c ${BPE} < $TMP/preprocessed.tok.$LANG > $TMP/preprocessed.tok.bpe.$LANG
done
Binarize the data for faster translation:
fairseq-preprocess --srcdict $MODEL_DIR/dict.$SRC_LANG.txt --tgtdict $MODEL_DIR/dict.$TGT_LANG.txt
--source-lang ${SRC_LANG} --target-lang ${TGT_LANG} --testpref $TMP/preprocessed.tok.bpe --destdir $TMP/bin --workers 4
Translate
CUDA_VISIBLE_DEVICES=$GPU fairseq-generate $TMP/bin --path ${MODEL_DIR}/${SRC_LANG}-${TGT_LANG}.pt --beam 5
--source-lang $SRC_LANG --target-lang $TGT_LANG --no-progress-bar --unkpen 5 > $TMP/fairseq.out
grep ^H $TMP/fairseq.out | cut -d- -f2- | sort -n | cut -f3- > $TMP/mt.out
Post-process
sed -r 's/(@@ )| (@@ ?$)//g' < $TMP/mt.out | perl $MOSES_DECODER/scripts/tokenizer/detokenizer.perl
-l $TGT_LANG > $OUTPUT_DIR/mt.out
Produce uncertainty estimates
Scoring
Make temporary files to store the translations repeated N times.
python ${SCRIPTS}/scripts/uncertainty/repeat_lines.py -i $TMP/preprocessed.tok.bpe.$SRC_LANG -n $DROPOUT_N
-o $TMP/repeated.$SRC_LANG
python ${SCRIPTS}/scripts/uncertainty/repeat_lines.py -i $TMP/mt.out -n $DROPOUT_N -o $TMP/repeated.$TGT_LANG
fairseq-preprocess --srcdict ${MODEL_DIR}/dict.${SRC_LANG}.txt $TGT_DIC --source-lang ${SRC_LANG}
--target-lang ${TGT_LANG} --testpref ${TMP}/repeated --destdir ${TMP}/bin-repeated
Produce model scores for the generated translations using --retain-dropout
option to apply dropout at inference time:
CUDA_VISIBLE_DEVICES=${GPU} fairseq-generate ${TMP}/bin-repeated --path ${MODEL_DIR}/${LP}.pt --beam 5
--source-lang $SRC_LANG --target-lang $TGT_LANG --no-progress-bar --unkpen 5 --score-reference --retain-dropout
--retain-dropout-modules '["TransformerModel","TransformerEncoder","TransformerDecoder","TransformerEncoderLayer"]'
TransformerDecoderLayer --seed 46 > $TMP/dropout.scoring.out
grep ^H $TMP/dropout.scoring.out | cut -d- -f2- | sort -n | cut -f2 > $TMP/dropout.scores
Use --retain-dropout-modules
to specify the modules. By default, dropout is applied in the same places
as for training.
Compute the mean of the resulting output distribution:
python $SCRIPTS/scripts/uncertainty/aggregate_scores.py -i $TMP/dropout.scores -o $OUTPUT_DIR/dropout.scores.mean
-n $DROPOUT_N
Generation
Produce multiple translation hypotheses for the same source using --retain-dropout
option:
CUDA_VISIBLE_DEVICES=${GPU} fairseq-generate ${TMP}/bin-repeated --path ${MODEL_DIR}/${LP}.pt
--beam 5 --source-lang $SRC_LANG --target-lang $TGT_LANG --no-progress-bar --retain-dropout
--unkpen 5 --retain-dropout-modules TransformerModel TransformerEncoder TransformerDecoder
TransformerEncoderLayer TransformerDecoderLayer --seed 46 > $TMP/dropout.generation.out
grep ^H $TMP/dropout.generation.out | cut -d- -f2- | sort -n | cut -f3- > $TMP/dropout.hypotheses_
sed -r 's/(@@ )| (@@ ?$)//g' < $TMP/dropout.hypotheses_ | perl $MOSES_DECODER/scripts/tokenizer/detokenizer.perl
-l $TGT_LANG > $TMP/dropout.hypotheses
Compute similarity between multiple hypotheses corresponding to the same source sentence using Meteor evaluation metric:
python meteor.py -i $TMP/dropout.hypotheses -m <path_to_meteor_installation> -n $DROPOUT_N -o
$OUTPUT_DIR/dropout.gen.sim.meteor