Spaces:
Running
Running
# Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019) | |
This page includes instructions for reproducing results from the paper [Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](https://arxiv.org/abs/1902.07816). | |
## Download data | |
First, follow the [instructions to download and preprocess the WMT'17 En-De dataset](../translation#prepare-wmt14en2desh). | |
Make sure to learn a joint vocabulary by passing the `--joined-dictionary` option to `fairseq-preprocess`. | |
## Train a model | |
Then we can train a mixture of experts model using the `translation_moe` task. | |
Use the `--method` flag to choose the MoE variant; we support hard mixtures with a learned or uniform prior (`--method hMoElp` and `hMoEup`, respectively) and soft mixures (`--method sMoElp` and `sMoEup`). | |
The model is trained with online responsibility assignment and shared parameterization. | |
The following command will train a `hMoElp` model with `3` experts: | |
```bash | |
fairseq-train --ddp-backend='legacy_ddp' \ | |
data-bin/wmt17_en_de \ | |
--max-update 100000 \ | |
--task translation_moe --user-dir examples/translation_moe/translation_moe_src \ | |
--method hMoElp --mean-pool-gating-network \ | |
--num-experts 3 \ | |
--arch transformer_wmt_en_de --share-all-embeddings \ | |
--optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \ | |
--lr-scheduler inverse_sqrt --warmup-init-lr 1e-07 --warmup-updates 4000 \ | |
--lr 0.0007 \ | |
--dropout 0.1 --weight-decay 0.0 --criterion cross_entropy \ | |
--max-tokens 3584 | |
``` | |
## Translate | |
Once a model is trained, we can generate translations from different experts using the `--gen-expert` option. | |
For example, to generate from expert 0: | |
```bash | |
fairseq-generate data-bin/wmt17_en_de \ | |
--path checkpoints/checkpoint_best.pt \ | |
--beam 1 --remove-bpe \ | |
--task translation_moe --user-dir examples/translation_moe/translation_moe_src \ | |
--method hMoElp --mean-pool-gating-network \ | |
--num-experts 3 \ | |
--gen-expert 0 | |
``` | |
## Evaluate | |
First download a tokenized version of the WMT'14 En-De test set with multiple references: | |
```bash | |
wget dl.fbaipublicfiles.com/fairseq/data/wmt14-en-de.extra_refs.tok | |
``` | |
Next apply BPE on the fly and run generation for each expert: | |
```bash | |
BPE_CODE=examples/translation/wmt17_en_de/code | |
for EXPERT in $(seq 0 2); do \ | |
cat wmt14-en-de.extra_refs.tok \ | |
| grep ^S | cut -f 2 \ | |
| fairseq-interactive data-bin/wmt17_en_de \ | |
--path checkpoints/checkpoint_best.pt \ | |
--beam 1 \ | |
--bpe subword_nmt --bpe-codes $BPE_CODE \ | |
--buffer-size 500 --max-tokens 6000 \ | |
--task translation_moe --user-dir examples/translation_moe/translation_moe_src \ | |
--method hMoElp --mean-pool-gating-network \ | |
--num-experts 3 \ | |
--gen-expert $EXPERT ; \ | |
done > wmt14-en-de.extra_refs.tok.gen.3experts | |
``` | |
Finally use `score_moe.py` to compute pairwise BLUE and average oracle BLEU: | |
```bash | |
python examples/translation_moe/score.py --sys wmt14-en-de.extra_refs.tok.gen.3experts --ref wmt14-en-de.extra_refs.tok | |
# pairwise BLEU: 48.26 | |
# #refs covered: 2.11 | |
# multi-reference BLEU (leave-one-out): 59.46 | |
``` | |
This matches row 3 from Table 7 in the paper. | |
## Citation | |
```bibtex | |
@article{shen2019mixture, | |
title = {Mixture Models for Diverse Machine Translation: Tricks of the Trade}, | |
author = {Tianxiao Shen and Myle Ott and Michael Auli and Marc'Aurelio Ranzato}, | |
journal = {International Conference on Machine Learning}, | |
year = 2019, | |
} | |
``` | |