Spaces:
Running
Megatron-11b
Megatron-11b is a unidirectional language model with 11B
parameters based on Megatron-LM. Following the original Megatron work, we trained the model using intra-layer model parallelism with each layer's parameters split across 8 GPUs.
Megatron-11b is trained on the same data and uses the same byte-pair encoding (BPE) as RoBERTa.
Pre-trained models
Model | Description | # params | # filesize | Download |
---|---|---|---|---|
megatron_11b |
megatron_11b unidirectional language model | 11B | 19Gb | megatron_11b.tar.gz |
Architecture:
Param | Value |
---|---|
embed_dim | 3072 |
ffn_dim | 3072 * 6 |
layers | 72 |
attention heads | 32 |
Training details:
Param | value |
---|---|
bsz | 512 |
num_updates | 300,000 |
peak_lr | 1.5e-04 |
lr scheduler | inverse_sqrt |
clip norm | 0.0 |
Example training command (model parallel)
Megatron-11b contains too many parameters to train on a single GPU. Following
the original Megatron work, we adopt an intra-layer model parallel training
approach in which each layer's parameters are split across multiple GPUs and
activations and gradients are communicated during the forward/backward pass,
respectively. We similarly split the loss computation using the
vocab_parallel_cross_entropy
criterion.
The following training command illustrates how to do model parallel training in
fairseq. We assume that each machine (node) has 8 GPUs among which to split the
model parameters (--model-parallel-size 8
). If you have access to multiple
nodes, you may combine this with data parallel training by increasing
--distributed-world-size
.
To train Megatron-11b on a single node:
fairseq-train <DATA_PATH> \
--distributed-world-size 8 \
--memory-efficient-fp16 \
--num-workers 2 \
--model-parallel-size 8 \
--criterion vocab_parallel_cross_entropy \
--task language_modeling \
--sample-break-mode none \
--tokens-per-sample 1024 \
--arch transformer_lm_megatron_11b \
--share-decoder-input-output-embed \
--optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-08 --clip-norm 0.0 \
--lr-scheduler inverse_sqrt --lr 0.00015 \
--warmup-updates 3000 --weight-decay 0.01 \
--dropout 0.1 --attention-dropout 0.1 \
--batch-size 2 \
--max-update 300000;
Note: Above was tested on DGX-1
box, with 8xV100-32Gb
GPUs.
Results
Model | Valid perplexity | Test perplexity |
---|---|---|
megatron_11b |
10.64 | 10.54 |
Evaluating megatron_11b
on Wikitext-103
1. Downloading Megatron-11b
# WARNING: this file is 19GB
wget https://dl.fbaipublicfiles.com/fairseq/models/model_parallel/megatron_11b.tar.gz
tar -xzvf megatron_11b.tar.gz
2. Download Wikitext-103
wget https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-raw-v1.zip
unzip wikitext-103-raw-v1.zip
3. Detokenize test tokens
Megatron-11b uses a byte-level BPE that expects raw (untokenized) input. Since the wikitext-103 dataset comes tokenized, we apply a simple detokenization process to restore the untokenized test set:
python -m examples.megatron_11b.detok wikitext-103-raw/wiki.test.raw > wikitext-103-raw/wiki.test.detok
4. BPE encoding
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json'
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe'
python -m examples.roberta.multiprocessing_bpe_encoder \
--encoder-json encoder.json \
--vocab-bpe vocab.bpe \
--inputs "wikitext-103-raw/wiki.test.detok" \
--outputs "wikitext-103-raw/wiki.test.bpe" \
--workers 60;
5. Fairseq binarize
fairseq-preprocess \
--only-source \
--testpref wikitext-103-raw/wiki.test.bpe \
--srcdict megatron_11b/dict.txt \
--destdir wikitext103-bin;
6. Evaluating perplexity.
We can now evaluate perplexity on the test set. Note that because we've modified
the test set (via detokenization and BPE), the perplexity reported by
fairseq-eval-lm
needs to be renormalized.
Compute unnormalized perplexity:
DATA_PATH=wikitext103-bin/
fairseq-eval-lm \
$DATA_PATH \
--path megatron_11b/model.pt \
--task language_modeling \
--gen-subset test \
--batch-size 8 \
--criterion cross_entropy \
--context-window 992 \
--distributed-world-size 8 \
--model-parallel-size 8;
# Expected PPL (unnormalized_ppl): [8.46]
# Note: the eval command needs to run on 8 GPUs for the released model
Renormalizing formula: 2 ^ ( log_2(unnormalized_PPL) * (270847 / 245566))
.
PPL After normalization: 10.54
To renormalize the perplexity, we must account for the change in token count
after detokenizing and appling BPE. The formula for this is:
2 ^ ( log_2(unnormalized_PPL) * (new_token_cnt / orig_token_cnt))
For the wikitext-103 test set, the original token count is 245566
and the
token count after detokenization and applying BPE is 270847
.
The perplexity after renormalization is:
2 ^ ( log_2(8.46) * (270847 / 245566)) = 10.54