Spaces:
Running
S2T Example: Speech Recognition (ASR) on LibriSpeech
LibriSpeech is a de-facto standard English ASR benchmark. We provide competitive vanilla Transformer baselines.
Data preparation
Download and preprocess LibriSpeech data with
# additional Python packages for S2T data processing/model training
pip install pandas torchaudio sentencepiece
python examples/speech_to_text/prep_librispeech_data.py \
--output-root ${LS_ROOT} --vocab-type unigram --vocab-size 10000
where LS_ROOT
is the root path for downloaded data as well as generated files (manifest, features, vocabulary and
data configuration).
Download our vocabulary files if you want to use our pre-trained models.
Training
fairseq-train ${LS_ROOT} --save-dir ${SAVE_DIR} \
--config-yaml config.yaml --train-subset train-clean-100,train-clean-360,train-other-500 --valid-subset dev-clean,dev-other \
--num-workers 4 --max-tokens 40000 --max-update 300000 \
--task speech_to_text --criterion label_smoothed_cross_entropy --label-smoothing 0.1 --report-accuracy \
--arch s2t_transformer_s --share-decoder-input-output-embed \
--optimizer adam --lr 2e-3 --lr-scheduler inverse_sqrt --warmup-updates 10000 \
--clip-norm 10.0 --seed 1 --update-freq 8
where SAVE_DIR
is the checkpoint root path. Here we use --arch s2t_transformer_s
(31M parameters) as example.
For better performance, you may switch to s2t_transformer_m
(71M, with --lr 1e-3
) or s2t_transformer_l
(268M, with --lr 5e-4
). We set --update-freq 8
to simulate 8 GPUs with 1 GPU. You may want to update it accordingly
when using more than 1 GPU.
Inference & Evaluation
Average the last 10 checkpoints and evaluate on the 4 splits
(dev-clean
, dev-other
, test-clean
and test-other
):
CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt
python scripts/average_checkpoints.py --inputs ${SAVE_DIR} \
--num-epoch-checkpoints 10 \
--output "${SAVE_DIR}/${CHECKPOINT_FILENAME}"
for SUBSET in dev-clean dev-other test-clean test-other; do
fairseq-generate ${LS_ROOT} --config-yaml config.yaml --gen-subset ${SUBSET} \
--task speech_to_text --path ${SAVE_DIR}/${CHECKPOINT_FILENAME} \
--max-tokens 50000 --beam 5 --scoring wer
done
Interactive Decoding
Launch the interactive console via
fairseq-interactive ${LS_ROOT} --config-yaml config.yaml --task speech_to_text \
--path ${SAVE_DIR}/${CHECKPOINT_FILENAME} --max-tokens 50000 --beam 5
Type in WAV/FLAC/OGG audio paths (one per line) after the prompt.