jiang
init commit
650c5f6
|
raw
history blame
5.88 kB

[Back]

S2T Example: ST on CoVoST

We replicate the experiments in CoVoST 2 and Massively Multilingual Speech-to-Text Translation (Wang et al., 2020).

Data Preparation

Download and unpack Common Voice v4 to a path ${COVOST_ROOT}/${SOURCE_LANG_ID}, then preprocess it with

# additional Python packages for S2T data processing/model training
pip install pandas torchaudio sentencepiece

# En ASR
python examples/speech_to_text/prep_covost_data.py \
  --data-root ${COVOST_ROOT} --vocab-type char --src-lang en
# ST
python examples/speech_to_text/prep_covost_data.py \
  --data-root ${COVOST_ROOT} --vocab-type char \
  --src-lang fr --tgt-lang en

The generated files (manifest, features, vocabulary and data configuration) will be added to ${COVOST_ROOT}/${SOURCE_LANG_ID}.

Download our vocabulary files if you want to use our pre-trained models:

ASR

Training

We train an En ASR model for encoder pre-training of all ST models:

fairseq-train ${COVOST_ROOT}/en \
  --config-yaml config_asr_en.yaml --train-subset train_asr_en --valid-subset dev_asr_en \
  --save-dir ${ASR_SAVE_DIR} --num-workers 4 --max-tokens 50000 --max-update 60000 \
  --task speech_to_text --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
  --report-accuracy --arch s2t_transformer_s --dropout 0.15 --optimizer adam --lr 2e-3 \
  --lr-scheduler inverse_sqrt --warmup-updates 10000 --clip-norm 10.0 --seed 1 --update-freq 8

where ASR_SAVE_DIR is the checkpoint root path. We set --update-freq 8 to simulate 8 GPUs with 1 GPU. You may want to update it accordingly when using more than 1 GPU.

Inference & Evaluation

CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt
python scripts/average_checkpoints.py \
  --inputs ${ASR_SAVE_DIR} --num-epoch-checkpoints 10 \
  --output "${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME}"
fairseq-generate ${COVOST_ROOT}/en \
  --config-yaml config_asr_en.yaml --gen-subset test_asr_en --task speech_to_text \
  --path ${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME} --max-tokens 50000 --beam 5 \
  --scoring wer --wer-tokenizer 13a --wer-lowercase --wer-remove-punct

Results

--arch Params En Model
s2t_transformer_s 31M 25.6 Download

ST

Training

Fr-En as example:

fairseq-train ${COVOST_ROOT}/fr \
  --config-yaml config_st_fr_en.yaml --train-subset train_st_fr_en --valid-subset dev_st_fr_en \
  --save-dir ${ST_SAVE_DIR} --num-workers 4 --max-update 30000 --max-tokens 40000 \  # --max-tokens 50000 for en-*
  --task speech_to_text --criterion label_smoothed_cross_entropy --label-smoothing 0.1 --report-accuracy \
  --arch s2t_transformer_s --encoder-freezing-updates 1000 --optimizer adam --lr 2e-3 \
  --lr-scheduler inverse_sqrt --warmup-updates 10000 --clip-norm 10.0 --seed 1 --update-freq 8 \
  --load-pretrained-encoder-from ${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME}

where ST_SAVE_DIR is the checkpoint root path. The ST encoder is pre-trained by En ASR for faster training and better performance: --load-pretrained-encoder-from <ASR checkpoint path>. We set --update-freq 8 to simulate 8 GPUs with 1 GPU. You may want to update it accordingly when using more than 1 GPU.

Inference & Evaluation

Average the last 10 checkpoints and evaluate on test split:

CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt
python scripts/average_checkpoints.py \
  --inputs ${ST_SAVE_DIR} --num-epoch-checkpoints 10 \
  --output "${ST_SAVE_DIR}/${CHECKPOINT_FILENAME}"
fairseq-generate ${COVOST_ROOT}/fr \
  --config-yaml config_st_fr_en.yaml --gen-subset test_st_fr_en --task speech_to_text \
  --path ${ST_SAVE_DIR}/${CHECKPOINT_FILENAME} \
  --max-tokens 50000 --beam 5 --scoring sacrebleu

Interactive Decoding

Launch the interactive console via

fairseq-interactive ${COVOST_ROOT}/fr --config-yaml config_st_fr_en.yaml \
  --task speech_to_text --path ${SAVE_DIR}/${CHECKPOINT_FILENAME} \
  --max-tokens 50000 --beam 5

Type in WAV/FLAC/OGG audio paths (one per line) after the prompt.

Results

--arch Params Fr-En De-En Es-En Ca-En En-De En-Ca En-Fa En-Et Model
s2t_transformer_s 31M 27.2 17.7 23.1 19.3 16.1 21.6 12.9 12.8 (<-Download)

[Back]