Spaces:
Paused
Paused
kit086
commited on
Commit
·
ba5efb5
1
Parent(s):
7d7185d
feat: 优化
Browse files- .gitignore +1 -0
- agent.py +227 -91
- app.py +5 -4
- metadata.jsonl +0 -0
- pyproject.toml +3 -0
- supabase_docs.csv +0 -0
- system_prompt.txt +18 -0
- uv.lock +0 -0
.gitignore
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
.venv
|
| 2 |
.env
|
| 3 |
**/__pycache__
|
|
|
|
|
|
| 1 |
.venv
|
| 2 |
.env
|
| 3 |
**/__pycache__
|
| 4 |
+
chroma_db
|
agent.py
CHANGED
|
@@ -1,97 +1,233 @@
|
|
| 1 |
-
"""agent.py
|
| 2 |
-
High-level Agent wrapper used by `app.py`.
|
| 3 |
-
|
| 4 |
-
Current implementation leverages:
|
| 5 |
-
• Gemini 1.5 Flash via `ChatGoogleGenerativeAI` (requires `GOOGLE_API_KEY` env).
|
| 6 |
-
• The LangChain `zero-shot-react-description` agent (simple & robust).
|
| 7 |
-
• Tools defined in `tools.create_tools`.
|
| 8 |
-
|
| 9 |
-
Later we can migrate the control loop to LangGraph, but this version already
|
| 10 |
-
provides a working agent that meets the API expectations (callable returning a
|
| 11 |
-
plain string answer).
|
| 12 |
-
"""
|
| 13 |
-
from __future__ import annotations
|
| 14 |
-
|
| 15 |
import os
|
| 16 |
-
import re
|
| 17 |
-
from typing import List
|
| 18 |
-
|
| 19 |
from dotenv import load_dotenv
|
| 20 |
-
from
|
|
|
|
|
|
|
| 21 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 22 |
-
from
|
| 23 |
-
|
| 24 |
-
from
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
#
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
"
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
"
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
"
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
)
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
self.agent_executor = initialize_agent(
|
| 77 |
-
self.tools,
|
| 78 |
-
self.llm,
|
| 79 |
-
agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
| 80 |
-
verbose=False,
|
| 81 |
-
handle_parsing_errors=True,
|
| 82 |
-
system_message=_SYSTEM_PROMPT,
|
| 83 |
-
callbacks=[PrintCallback()],
|
| 84 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
| 2 |
from dotenv import load_dotenv
|
| 3 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
| 4 |
+
from langgraph.prebuilt import tools_condition
|
| 5 |
+
from langgraph.prebuilt import ToolNode
|
| 6 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 7 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 8 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 9 |
+
from langchain_community.document_loaders import WikipediaLoader
|
| 10 |
+
from langchain_community.document_loaders import ArxivLoader
|
| 11 |
+
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
| 12 |
+
from langchain_core.tools import tool
|
| 13 |
+
from langchain.tools.retriever import create_retriever_tool
|
| 14 |
+
from langchain_community.vectorstores import Chroma
|
| 15 |
+
from langchain_core.documents import Document
|
| 16 |
+
import shutil
|
| 17 |
+
import pandas as pd # Ny import för pandas
|
| 18 |
+
import json # För att parsa metadata-kolumnen
|
| 19 |
+
|
| 20 |
+
load_dotenv()
|
| 21 |
+
|
| 22 |
+
# Tools:
|
| 23 |
+
@tool
|
| 24 |
+
def multiply(a: int, b: int) -> int:
|
| 25 |
+
"""Multiply two numbers.
|
| 26 |
+
Args:
|
| 27 |
+
a: first int
|
| 28 |
+
b: second int
|
| 29 |
+
"""
|
| 30 |
+
return a * b
|
| 31 |
+
|
| 32 |
+
@tool
|
| 33 |
+
def add(a: int, b: int) -> int:
|
| 34 |
+
"""Add two numbers.
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
a: first int
|
| 38 |
+
b: second int
|
| 39 |
+
"""
|
| 40 |
+
return a + b
|
| 41 |
+
|
| 42 |
+
@tool
|
| 43 |
+
def subtract(a: int, b: int) -> int:
|
| 44 |
+
"""Subtract two numbers.
|
| 45 |
+
|
| 46 |
+
Args:
|
| 47 |
+
a: first int
|
| 48 |
+
b: second int
|
| 49 |
+
"""
|
| 50 |
+
return a - b
|
| 51 |
+
|
| 52 |
+
@tool
|
| 53 |
+
def divide(a: int, b: int) -> int:
|
| 54 |
+
"""Divide two numbers.
|
| 55 |
+
|
| 56 |
+
Args:
|
| 57 |
+
a: first int
|
| 58 |
+
b: second int
|
| 59 |
+
"""
|
| 60 |
+
if b == 0:
|
| 61 |
+
raise ValueError("Cannot divide by zero.")
|
| 62 |
+
return a / b
|
| 63 |
+
|
| 64 |
+
@tool
|
| 65 |
+
def modulus(a: int, b: int) -> int:
|
| 66 |
+
"""Get the modulus of two numbers.
|
| 67 |
+
|
| 68 |
+
Args:
|
| 69 |
+
a: first int
|
| 70 |
+
b: second int
|
| 71 |
+
"""
|
| 72 |
+
return a % b
|
| 73 |
+
|
| 74 |
+
@tool
|
| 75 |
+
def wiki_search(query: str) -> str:
|
| 76 |
+
"""Search Wikipedia for a query and return maximum 2 results.
|
| 77 |
+
|
| 78 |
+
Args:
|
| 79 |
+
query: The search query."""
|
| 80 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
| 81 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
| 82 |
+
[
|
| 83 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
| 84 |
+
for doc in search_docs
|
| 85 |
+
])
|
| 86 |
+
return {"wiki_results": formatted_search_docs}
|
| 87 |
+
|
| 88 |
+
@tool
|
| 89 |
+
def web_search(query: str) -> str:
|
| 90 |
+
"""Search Tavily for a query and return maximum 3 results.
|
| 91 |
+
|
| 92 |
+
Args:
|
| 93 |
+
query: The search query."""
|
| 94 |
+
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
| 95 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
| 96 |
+
[
|
| 97 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
| 98 |
+
for doc in search_docs
|
| 99 |
+
])
|
| 100 |
+
return {"web_results": formatted_search_docs}
|
| 101 |
+
|
| 102 |
+
@tool
|
| 103 |
+
def arvix_search(query: str) -> str:
|
| 104 |
+
"""Search Arxiv for a query and return maximum 3 result.
|
| 105 |
+
|
| 106 |
+
Args:
|
| 107 |
+
query: The search query."""
|
| 108 |
+
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
| 109 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
| 110 |
+
[
|
| 111 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
| 112 |
+
for doc in search_docs
|
| 113 |
+
])
|
| 114 |
+
return {"arvix_results": formatted_search_docs}
|
| 115 |
+
|
| 116 |
+
# load the system prompt from the file
|
| 117 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
| 118 |
+
system_prompt = f.read()
|
| 119 |
+
|
| 120 |
+
# Retrieval
|
| 121 |
+
CHROMA_DIR = "./chroma_db"
|
| 122 |
+
CSV_PATH = "./supabase_docs.csv"
|
| 123 |
+
EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
| 124 |
+
_SIMILARITY_THRESHOLD = 0.2 # lower distance means more similar
|
| 125 |
+
|
| 126 |
+
embeddings = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
|
| 127 |
+
|
| 128 |
+
if os.path.exists(CHROMA_DIR):
|
| 129 |
+
print(f"Loading existing ChromaDB from {CHROMA_DIR}")
|
| 130 |
+
vector_store = Chroma(
|
| 131 |
+
persist_directory=CHROMA_DIR,
|
| 132 |
+
embedding_function=embeddings,
|
| 133 |
+
)
|
| 134 |
+
else:
|
| 135 |
+
print(f"Creating new ChromaDB at {CHROMA_DIR}, and loading documents from {CSV_PATH}")
|
| 136 |
+
if os.path.exists(CHROMA_DIR):
|
| 137 |
+
shutil.rmtree(CHROMA_DIR)
|
| 138 |
+
os.makedirs(CHROMA_DIR)
|
| 139 |
+
|
| 140 |
+
if not os.path.exists(CSV_PATH):
|
| 141 |
+
raise FileNotFoundError(f"CSV file {CSV_PATH} does not exist")
|
| 142 |
+
|
| 143 |
+
df = pd.read_csv(CSV_PATH)
|
| 144 |
+
documents = []
|
| 145 |
+
for i, row in df.iterrows():
|
| 146 |
+
content = row["content"]
|
| 147 |
+
|
| 148 |
+
question_part = content.split("Final answer :")[0].strip()
|
| 149 |
+
final_answer_part = content.split("Final answer :")[-1].strip() if "Final answer :" in content else ""
|
| 150 |
+
|
| 151 |
+
try:
|
| 152 |
+
metadata = json.loads(row["metadata"].replace("'", '"'))
|
| 153 |
+
except json.JSONDecodeError:
|
| 154 |
+
metadata = {}
|
| 155 |
+
|
| 156 |
+
metadata["final_answer"] = final_answer_part
|
| 157 |
+
|
| 158 |
+
documents.append(Document(page_content=question_part, metadata=metadata))
|
| 159 |
+
|
| 160 |
+
if not documents:
|
| 161 |
+
print("No documents loaded from CSV. ChromaDB will be empty.")
|
| 162 |
+
|
| 163 |
+
vector_store = Chroma(
|
| 164 |
+
persist_directory=CHROMA_DIR,
|
| 165 |
+
embedding_function=embeddings
|
| 166 |
)
|
| 167 |
+
else:
|
| 168 |
+
vector_store = Chroma.from_documents(
|
| 169 |
+
documents=documents,
|
| 170 |
+
embedding=embeddings,
|
| 171 |
+
persist_directory=CHROMA_DIR,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
)
|
| 173 |
+
vector_store.persist()
|
| 174 |
+
print(f"ChromaDB initialized and persisted with {len(documents)} documents from CSV.")
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
# Retriever tool
|
| 178 |
+
retriever_tool = create_retriever_tool(
|
| 179 |
+
retriever = vector_store.as_retriever(),
|
| 180 |
+
name = "Question_Search",
|
| 181 |
+
description = "A tool to retrieve similar questions from a vector store. The retrieved document's metadata contains the 'final_answer' to the question."
|
| 182 |
+
)
|
| 183 |
|
| 184 |
+
# Agent
|
| 185 |
+
|
| 186 |
+
tools = [
|
| 187 |
+
multiply,
|
| 188 |
+
add,
|
| 189 |
+
subtract,
|
| 190 |
+
divide,
|
| 191 |
+
modulus,
|
| 192 |
+
wiki_search,
|
| 193 |
+
web_search,
|
| 194 |
+
arvix_search,
|
| 195 |
+
retriever_tool,
|
| 196 |
+
]
|
| 197 |
+
|
| 198 |
+
def build_graph_agent():
|
| 199 |
+
llm = ChatGoogleGenerativeAI(
|
| 200 |
+
model_name="gemini-1.5-flash",
|
| 201 |
+
temperature=0.0,
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
llm_with_tools = llm.bind_tools(tools)
|
| 205 |
+
|
| 206 |
+
def assistant(state: MessagesState):
|
| 207 |
+
return {
|
| 208 |
+
"messages": [llm_with_tools.invoke(state["messages"])],
|
| 209 |
+
}
|
| 210 |
+
|
| 211 |
+
def retriever(state: MessagesState):
|
| 212 |
+
query = state["messages"][-1].content
|
| 213 |
+
similar_docs = vector_store.similarity_search(query, k=3)
|
| 214 |
+
|
| 215 |
+
if similar_docs:
|
| 216 |
+
similar_doc = similar_docs[0]
|
| 217 |
+
if "final_answer" in similar_doc.metadata and similar_doc.metadata["final_answer"]:
|
| 218 |
+
answer = similar_doc.metadata["final_answer"]
|
| 219 |
+
elif "Final answer :" in similar_doc.page_content:
|
| 220 |
+
answer = similar_doc.page_content.split("Final answer :")[-1].strip()
|
| 221 |
+
else:
|
| 222 |
+
answer = similar_doc.page_content.strip()
|
| 223 |
+
|
| 224 |
+
return {"messages": [AIMessage(content=answer)]}
|
| 225 |
+
else:
|
| 226 |
+
return {"messages": [AIMessage(content="No similar questions found in the knowledge base.")]}
|
| 227 |
+
|
| 228 |
+
builder = StateGraph(MessagesState)
|
| 229 |
+
builder.add_node("retriever", retriever)
|
| 230 |
+
builder.set_entry_point("retriever")
|
| 231 |
+
builder.set_finish_point("retriever")
|
| 232 |
+
|
| 233 |
+
return builder.compile()
|
app.py
CHANGED
|
@@ -3,7 +3,7 @@ import gradio as gr
|
|
| 3 |
import requests
|
| 4 |
import inspect
|
| 5 |
from dotenv import load_dotenv
|
| 6 |
-
from agent import
|
| 7 |
import pandas as pd
|
| 8 |
import time
|
| 9 |
|
|
@@ -16,6 +16,7 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
| 16 |
class BasicAgent:
|
| 17 |
def __init__(self):
|
| 18 |
print("BasicAgent initialized.")
|
|
|
|
| 19 |
def __call__(self, question: str) -> str:
|
| 20 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 21 |
fixed_answer = "This is a default answer."
|
|
@@ -44,7 +45,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 44 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 45 |
try:
|
| 46 |
load_dotenv()
|
| 47 |
-
agent =
|
| 48 |
except Exception as e:
|
| 49 |
print(f"Error instantiating agent: {e}")
|
| 50 |
return f"Error initializing agent: {e}", None
|
|
@@ -90,8 +91,8 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 90 |
except Exception as e:
|
| 91 |
print(f"Error running agent on task {task_id}: {e}")
|
| 92 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 93 |
-
# wait
|
| 94 |
-
time.sleep(
|
| 95 |
|
| 96 |
if not answers_payload:
|
| 97 |
print("Agent did not produce any answers to submit.")
|
|
|
|
| 3 |
import requests
|
| 4 |
import inspect
|
| 5 |
from dotenv import load_dotenv
|
| 6 |
+
from agent import build_graph_agent
|
| 7 |
import pandas as pd
|
| 8 |
import time
|
| 9 |
|
|
|
|
| 16 |
class BasicAgent:
|
| 17 |
def __init__(self):
|
| 18 |
print("BasicAgent initialized.")
|
| 19 |
+
self.graph = build_graph_agent()
|
| 20 |
def __call__(self, question: str) -> str:
|
| 21 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 22 |
fixed_answer = "This is a default answer."
|
|
|
|
| 45 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 46 |
try:
|
| 47 |
load_dotenv()
|
| 48 |
+
agent = BasicAgent()
|
| 49 |
except Exception as e:
|
| 50 |
print(f"Error instantiating agent: {e}")
|
| 51 |
return f"Error initializing agent: {e}", None
|
|
|
|
| 91 |
except Exception as e:
|
| 92 |
print(f"Error running agent on task {task_id}: {e}")
|
| 93 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 94 |
+
# wait 20s before next question
|
| 95 |
+
time.sleep(10)
|
| 96 |
|
| 97 |
if not answers_payload:
|
| 98 |
print("Agent did not produce any answers to submit.")
|
metadata.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pyproject.toml
CHANGED
|
@@ -5,14 +5,17 @@ description = "Add your description here"
|
|
| 5 |
readme = "README.md"
|
| 6 |
requires-python = ">=3.12"
|
| 7 |
dependencies = [
|
|
|
|
| 8 |
"ddgs>=9.0.0",
|
| 9 |
"duckduckgo-search>=8.1.1",
|
| 10 |
"gradio[oauth]>=5.36.2",
|
| 11 |
"langchain>=0.3.26",
|
|
|
|
| 12 |
"langchain-community>=0.3.27",
|
| 13 |
"langchain-experimental>=0.3.4",
|
| 14 |
"langchain-google-genai>=2.1.7",
|
| 15 |
"langchain-huggingface>=0.3.0",
|
| 16 |
"langgraph>=0.5.2",
|
| 17 |
"requests>=2.32.4",
|
|
|
|
| 18 |
]
|
|
|
|
| 5 |
readme = "README.md"
|
| 6 |
requires-python = ">=3.12"
|
| 7 |
dependencies = [
|
| 8 |
+
"chromadb>=1.0.15",
|
| 9 |
"ddgs>=9.0.0",
|
| 10 |
"duckduckgo-search>=8.1.1",
|
| 11 |
"gradio[oauth]>=5.36.2",
|
| 12 |
"langchain>=0.3.26",
|
| 13 |
+
"langchain-chroma>=0.2.4",
|
| 14 |
"langchain-community>=0.3.27",
|
| 15 |
"langchain-experimental>=0.3.4",
|
| 16 |
"langchain-google-genai>=2.1.7",
|
| 17 |
"langchain-huggingface>=0.3.0",
|
| 18 |
"langgraph>=0.5.2",
|
| 19 |
"requests>=2.32.4",
|
| 20 |
+
"sentence-transformers>=5.0.0",
|
| 21 |
]
|
supabase_docs.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
system_prompt.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
You are a helpful assistant tasked with answering questions using a set of tools.
|
| 2 |
+
|
| 3 |
+
Your final answer must strictly follow this format:
|
| 4 |
+
FINAL ANSWER: [ANSWER]
|
| 5 |
+
|
| 6 |
+
Only write the answer in that exact format. Do not explain anything. Do not include any other text.
|
| 7 |
+
|
| 8 |
+
If you are provided with a similar question and its final answer, and the current question is **exactly the same**, then simply return the same final answer without using any tools.
|
| 9 |
+
|
| 10 |
+
Only use tools if the current question is different from the similar one.
|
| 11 |
+
|
| 12 |
+
Examples:
|
| 13 |
+
- FINAL ANSWER: FunkMonk
|
| 14 |
+
- FINAL ANSWER: Paris
|
| 15 |
+
- FINAL ANSWER: 128
|
| 16 |
+
|
| 17 |
+
If you do not follow this format exactly, your response will be considered incorrect.
|
| 18 |
+
|
uv.lock
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|