|
from typing import List, Tuple |
|
import torch |
|
import nltk |
|
from SciAssist import DatasetExtraction |
|
|
|
device = "gpu" if torch.cuda.is_available() else "cpu" |
|
de_pipeline = DatasetExtraction(os_name="nt") |
|
|
|
|
|
def de_for_str(input): |
|
list_input = nltk.sent_tokenize(input) |
|
results = de_pipeline.extract(list_input, type="str", save_results=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
output = [] |
|
for mention_pair in results["dataset_mentions"]: |
|
output.append((mention_pair[0], mention_pair[1])) |
|
output.append(("\n\n", None)) |
|
return output |
|
|
|
def de_for_file(input): |
|
if input == None: |
|
return None |
|
filename = input.name |
|
|
|
if filename[-4:] == ".txt": |
|
results = de_pipeline.extract(filename, type="txt", save_results=False) |
|
elif filename[-4:] == ".pdf": |
|
results = de_pipeline.extract(filename, type="pdf", save_results=False) |
|
else: |
|
return [("File Format Error !", None)] |
|
|
|
output = [] |
|
for mention_pair in results["dataset_mentions"]: |
|
output.append((mention_pair[0], mention_pair[1])) |
|
output.append(("\n\n", None)) |
|
return output |
|
|
|
|
|
de_str_example = "BAKIS incorporates information derived from the bank balance sheets and supervisory reports of all German banks ." |