Ilaria_RVC_MOD / app.py
TheStinger's picture
Update app.py
68173e6 verified
raw
history blame
13.2 kB
import gradio as gr
import requests
import random
import os
import zipfile
import librosa
import time
from infer_rvc_python import BaseLoader
from pydub import AudioSegment
from tts_voice import tts_order_voice
import edge_tts
import tempfile
import anyio
import asyncio
from audio_separator.separator import Separator
language_dict = tts_order_voice
async def text_to_speech_edge(text, language_code):
voice = language_dict[language_code]
communicate = edge_tts.Communicate(text, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
# fucking dogshit toggle
try:
import spaces
spaces_status = True
except ImportError:
spaces_status = False
separator = Separator()
converter = BaseLoader(only_cpu=False, hubert_path=None, rmvpe_path=None)
global pth_file
global index_file
pth_file = "model.pth"
index_file = "model.index"
#CONFIGS
TEMP_DIR = "temp"
MODEL_PREFIX = "model"
PITCH_ALGO_OPT = [
"pm",
"harvest",
"crepe",
"rmvpe",
"rmvpe+",
]
os.makedirs(TEMP_DIR, exist_ok=True)
def unzip_file(file):
filename = os.path.basename(file).split(".")[0]
with zipfile.ZipFile(file, 'r') as zip_ref:
zip_ref.extractall(os.path.join(TEMP_DIR, filename))
return True
def get_training_info(audio_file):
if audio_file is None:
return 'Please provide an audio file!'
duration = get_audio_duration(audio_file)
sample_rate = wave.open(audio_file, 'rb').getframerate()
training_info = {
(0, 2): (150, 'OV2'),
(2, 3): (200, 'OV2'),
(3, 5): (250, 'OV2'),
(5, 10): (300, 'Normal'),
(10, 25): (500, 'Normal'),
(25, 45): (700, 'Normal'),
(45, 60): (1000, 'Normal')
}
for (min_duration, max_duration), (epochs, pretrain) in training_info.items():
if min_duration <= duration < max_duration:
break
else:
return 'Duration is not within the specified range!'
return f'You should use the **{pretrain}** pretrain with **{epochs}** epochs at **{sample_rate/1000}khz** sample rate.'
def on_button_click(audio_file_path):
return get_training_info(audio_file_path)
def get_audio_duration(audio_file_path):
audio_info = sf.info(audio_file_path)
duration_minutes = audio_info.duration / 60
return duration_minutes
def progress_bar(total, current): # best progress bar ever trust me sunglasses emoji 😎
return "[" + "=" * int(current / total * 20) + ">" + " " * (20 - int(current / total * 20)) + "] " + str(int(current / total * 100)) + "%"
def download_from_url(url, filename=None):
if "/blob/" in url:
url = url.replace("/blob/", "/resolve/") # made it delik proof 😎
if "huggingface" not in url:
return ["The URL must be from huggingface", "Failed", "Failed"]
if filename is None:
filename = os.path.join(TEMP_DIR, MODEL_PREFIX + str(random.randint(1, 1000)) + ".zip")
response = requests.get(url)
total = int(response.headers.get('content-length', 0)) # bytes to download (length of the file)
if total > 500000000:
return ["The file is too large. You can only download files up to 500 MB in size.", "Failed", "Failed"]
current = 0
with open(filename, "wb") as f:
for data in response.iter_content(chunk_size=4096):
f.write(data)
current += len(data)
print(progress_bar(total, current), end="\r")
try:
unzip_file(filename)
except Exception as e:
return ["Failed to unzip the file", "Failed", "Failed"]
unzipped_dir = os.path.join(TEMP_DIR, os.path.basename(filename).split(".")[0])
pth_files = []
index_files = []
for root, dirs, files in os.walk(unzipped_dir):
for file in files:
if file.endswith(".pth"):
pth_files.append(os.path.join(root, file))
elif file.endswith(".index"):
index_files.append(os.path.join(root, file))
print(pth_files, index_files)
global pth_file
global index_file
pth_file = pth_files[0]
index_file = index_files[0]
pth_file_ui.value = pth_file
index_file_ui.value = index_file
print(pth_file_ui.value)
print(index_file_ui.value)
return ["Downloaded as " + filename, pth_files[0], index_files[0]]
def inference(audio, model_name):
output_data = inf_handler(audio, model_name)
vocals = output_data[0]
inst = output_data[1]
return vocals, inst
if spaces_status:
@spaces.GPU()
def convert_now(audio_files, random_tag, converter):
return converter(
audio_files,
random_tag,
overwrite=False,
parallel_workers=8
)
else:
def convert_now(audio_files, random_tag, converter):
return converter(
audio_files,
random_tag,
overwrite=False,
parallel_workers=8
)
def calculate_remaining_time(epochs, seconds_per_epoch):
total_seconds = epochs * seconds_per_epoch
hours = total_seconds // 3600
minutes = (total_seconds % 3600) // 60
seconds = total_seconds % 60
if hours == 0:
return f"{int(minutes)} minutes"
elif hours == 1:
return f"{int(hours)} hour and {int(minutes)} minutes"
else:
return f"{int(hours)} hours and {int(minutes)} minutes"
def inf_handler(audio, model_name):
model_found = False
for model_info in UVR_5_MODELS:
if model_info["model_name"] == model_name:
separator.load_model(model_info["checkpoint"])
model_found = True
break
if not model_found:
separator.load_model()
output_files = separator.separate(audio)
vocals = output_files[0]
inst = output_files[1]
return vocals, inst
def run(
audio_files,
pitch_alg,
pitch_lvl,
index_inf,
r_m_f,
e_r,
c_b_p,
):
if not audio_files:
raise ValueError("The audio pls")
if isinstance(audio_files, str):
audio_files = [audio_files]
try:
duration_base = librosa.get_duration(filename=audio_files[0])
print("Duration:", duration_base)
except Exception as e:
print(e)
random_tag = "USER_"+str(random.randint(10000000, 99999999))
file_m = pth_file_ui.value
file_index = index_file_ui.value
print("Random tag:", random_tag)
print("File model:", file_m)
print("Pitch algorithm:", pitch_alg)
print("Pitch level:", pitch_lvl)
print("File index:", file_index)
print("Index influence:", index_inf)
print("Respiration median filtering:", r_m_f)
print("Envelope ratio:", e_r)
converter.apply_conf(
tag=random_tag,
file_model=file_m,
pitch_algo=pitch_alg,
pitch_lvl=pitch_lvl,
file_index=file_index,
index_influence=index_inf,
respiration_median_filtering=r_m_f,
envelope_ratio=e_r,
consonant_breath_protection=c_b_p,
resample_sr=44100 if audio_files[0].endswith('.mp3') else 0,
)
time.sleep(0.1)
result = convert_now(audio_files, random_tag, converter)
print("Result:", result)
return result[0]
def upload_model(index_file, pth_file):
pth_file = pth_file.name
index_file = index_file.name
pth_file_ui.value = pth_file
index_file_ui.value = index_file
return "Uploaded!"
with gr.Blocks(theme=gr.themes.Default(primary_hue="pink", secondary_hue="rose"), title="Ilaria RVC πŸ’–") as demo:
gr.Markdown("## Ilaria RVC πŸ’–")
with gr.Tab("Inference"):
sound_gui = gr.Audio(value=None, type="filepath", autoplay=False, visible=True)
pth_file_ui = gr.Textbox(label="Model pth file", value=pth_file, visible=False, interactive=False)
index_file_ui = gr.Textbox(label="Index pth file", value=index_file, visible=False, interactive=False)
with gr.Accordion("Ilaria TTS", open=False):
text_tts = gr.Textbox(label="Text", placeholder="Hello!", lines=3, interactive=True)
dropdown_tts = gr.Dropdown(label="Language and Model", choices=list(language_dict.keys()), interactive=True, value=list(language_dict.keys())[0])
button_tts = gr.Button("Speak", variant="primary")
# Rimuovi l'output_tts e usa solo sound_gui come output
button_tts.click(text_to_speech_edge, inputs=[text_tts, dropdown_tts], outputs=sound_gui)
with gr.Accordion("Settings", open=False):
pitch_algo_conf = gr.Dropdown(PITCH_ALGO_OPT, value=PITCH_ALGO_OPT[4], label="Pitch algorithm", visible=True, interactive=True)
pitch_lvl_conf = gr.Slider(label="Pitch level (lower -> 'male' while higher -> 'female')", minimum=-24, maximum=24, step=1, value=0, visible=True, interactive=True)
index_inf_conf = gr.Slider(minimum=0, maximum=1, label="Index influence -> How much accent is applied", value=0.75)
respiration_filter_conf = gr.Slider(minimum=0, maximum=7, label="Respiration median filtering", value=3, step=1, interactive=True)
envelope_ratio_conf = gr.Slider(minimum=0, maximum=1, label="Envelope ratio", value=0.25, interactive=True)
consonant_protec_conf = gr.Slider(minimum=0, maximum=0.5, label="Consonant breath protection", value=0.5, interactive=True)
button_conf = gr.Button("Convert", variant="primary")
output_conf = gr.Audio(type="filepath", label="Output")
button_conf.click(lambda: None, None, output_conf)
button_conf.click(
run,
inputs=[
sound_gui,
pitch_algo_conf,
pitch_lvl_conf,
index_inf_conf,
respiration_filter_conf,
envelope_ratio_conf,
consonant_protec_conf,
],
outputs=[output_conf],
)
with gr.Tab("Model Loader (Download and Upload)"):
with gr.Accordion("Model Downloader", open=False):
gr.Markdown(
"Download the model from the following URL and upload it here. (Hugginface RVC model)"
)
model = gr.Textbox(lines=1, label="Model URL")
download_button = gr.Button("Download Model")
status = gr.Textbox(lines=1, label="Status", placeholder="Waiting....", interactive=False)
model_pth = gr.Textbox(lines=1, label="Model pth file", placeholder="Waiting....", interactive=False)
index_pth = gr.Textbox(lines=1, label="Index pth file", placeholder="Waiting....", interactive=False)
download_button.click(download_from_url, model, outputs=[status, model_pth, index_pth])
with gr.Accordion("Upload A Model", open=False):
index_file_upload = gr.File(label="Index File (.index)")
pth_file_upload = gr.File(label="Model File (.pth)")
upload_button = gr.Button("Upload Model")
upload_status = gr.Textbox(lines=1, label="Status", placeholder="Waiting....", interactive=False)
upload_button.click(upload_model, [index_file_upload, pth_file_upload], upload_status)
with gr.Tab("Extra"):
with gr.Accordion("Training Time Calculator", open=False):
with gr.Column():
epochs_input = gr.Number(label="Number of Epochs")
seconds_input = gr.Number(label="Seconds per Epoch")
calculate_button = gr.Button("Calculate Time Remaining")
remaining_time_output = gr.Textbox(label="Remaining Time", interactive=False)
calculate_button.click(
fn=calculate_remaining_time,
inputs=[epochs_input, seconds_input],
outputs=[remaining_time_output]
)
with gr.Accordion('Training Helper', open=False):
with gr.Column():
audio_input = gr.Audio(type="filepath", label="Upload your audio file")
gr.Text("Please note that these results are approximate and intended to provide a general idea for beginners.", label='Notice:')
training_info_output = gr.Markdown(label="Training Information:")
get_info_button = gr.Button("Get Training Info")
get_info_button.click(
fn=on_button_click,
inputs=[audio_input],
outputs=[training_info_output]
)
with gr.Tab("Credits"):
gr.Markdown(
"""
Ilaria RVC made by [Ilaria](https://huggingface.co/TheStinger) suport her on [ko-fi](https://ko-fi.com/ilariaowo)
The Inference code is made by [r3gm](https://huggingface.co/r3gm) (his module helped form this space πŸ’–)
made with ❀️ by [mikus](https://github.com/cappuch) - i make this ui........
## In loving memory of JLabDX πŸ•ŠοΈ
"""
)
demo.queue(api_open=False).launch(show_api=False)