fffiloni's picture
Migrated from GitHub
d59f323 verified
raw
history blame
5.59 kB
# Copyright (c) OpenMMLab. All rights reserved.
import collections
import os.path as osp
import random
from typing import Dict, List
import mmengine
from mmengine.dataset import BaseDataset
# from mmdet.registry import DATASETS
# @DATASETS.register_module()
class RefCocoDataset(BaseDataset):
"""RefCOCO dataset.
The `Refcoco` and `Refcoco+` dataset is based on
`ReferItGame: Referring to Objects in Photographs of Natural Scenes
<http://tamaraberg.com/papers/referit.pdf>`_.
The `Refcocog` dataset is based on
`Generation and Comprehension of Unambiguous Object Descriptions
<https://arxiv.org/abs/1511.02283>`_.
Args:
ann_file (str): Annotation file path.
data_root (str): The root directory for ``data_prefix`` and
``ann_file``. Defaults to ''.
data_prefix (str): Prefix for training data.
split_file (str): Split file path.
split (str): Split name. Defaults to 'train'.
text_mode (str): Text mode. Defaults to 'random'.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
"""
def __init__(self,
data_root: str,
ann_file: str,
split_file: str,
data_prefix: Dict,
split: str = 'train',
text_mode: str = 'random',
**kwargs):
self.split_file = split_file
self.split = split
assert text_mode in ['original', 'random', 'concat', 'select_first']
self.text_mode = text_mode
super().__init__(
data_root=data_root,
data_prefix=data_prefix,
ann_file=ann_file,
**kwargs,
)
def _join_prefix(self):
if not mmengine.is_abs(self.split_file) and self.split_file:
self.split_file = osp.join(self.data_root, self.split_file)
return super()._join_prefix()
def _init_refs(self):
"""Initialize the refs for RefCOCO."""
anns, imgs = {}, {}
for ann in self.instances['annotations']:
anns[ann['id']] = ann
for img in self.instances['images']:
imgs[img['id']] = img
refs, ref_to_ann = {}, {}
for ref in self.splits:
# ids
ref_id = ref['ref_id']
ann_id = ref['ann_id']
# add mapping related to ref
refs[ref_id] = ref
ref_to_ann[ref_id] = anns[ann_id]
self.refs = refs
self.ref_to_ann = ref_to_ann
def load_data_list(self) -> List[dict]:
"""Load data list."""
self.splits = mmengine.load(self.split_file, file_format='pkl')
self.instances = mmengine.load(self.ann_file, file_format='json')
self._init_refs()
img_prefix = self.data_prefix['img_path']
ref_ids = [
ref['ref_id'] for ref in self.splits if ref['split'] == self.split
]
full_anno = []
for ref_id in ref_ids:
ref = self.refs[ref_id]
ann = self.ref_to_ann[ref_id]
ann.update(ref)
full_anno.append(ann)
image_id_list = []
final_anno = {}
for anno in full_anno:
image_id_list.append(anno['image_id'])
final_anno[anno['ann_id']] = anno
annotations = [value for key, value in final_anno.items()]
coco_train_id = []
image_annot = {}
for i in range(len(self.instances['images'])):
coco_train_id.append(self.instances['images'][i]['id'])
image_annot[self.instances['images'][i]
['id']] = self.instances['images'][i]
images = []
for image_id in list(set(image_id_list)):
images += [image_annot[image_id]]
data_list = []
grounding_dict = collections.defaultdict(list)
for anno in annotations:
image_id = int(anno['image_id'])
grounding_dict[image_id].append(anno)
join_path = mmengine.fileio.get_file_backend(img_prefix).join_path
for image in images:
img_id = image['id']
instances = []
sentences = []
for grounding_anno in grounding_dict[img_id]:
texts = [x['raw'].lower() for x in grounding_anno['sentences']]
# random select one text
if self.text_mode == 'random':
idx = random.randint(0, len(texts) - 1)
text = [texts[idx]]
# concat all texts
elif self.text_mode == 'concat':
text = [''.join(texts)]
# select the first text
elif self.text_mode == 'select_first':
text = [texts[0]]
# use all texts
elif self.text_mode == 'original':
text = texts
else:
raise ValueError(f'Invalid text mode "{self.text_mode}".')
ins = [{
'mask': grounding_anno['segmentation'],
'ignore_flag': 0
}] * len(text)
instances.extend(ins)
sentences.extend(text)
data_info = {
'img_path': join_path(img_prefix, image['file_name']),
'img_id': img_id,
'instances': instances,
'text': sentences
}
data_list.append(data_info)
if len(data_list) == 0:
raise ValueError(f'No sample in split "{self.split}".')
return data_list