Spaces:
Running
on
Zero
Running
on
Zero
import logging | |
import os | |
from typing import Literal | |
import torch | |
from datasets import Dataset as HFDataset | |
from datasets import DatasetDict | |
from mmengine import print_log | |
from PIL import Image | |
from torch.utils.data import Dataset | |
import numpy as np | |
from xtuner.registry import BUILDER | |
from xtuner.dataset.huggingface import build_origin_dataset | |
import copy | |
from .encode_fn import video_lisa_encode_fn | |
import json | |
import random | |
import pycocotools.mask as maskUtils | |
import cv2 | |
import torchvision.transforms as T | |
from torchvision.transforms.functional import InterpolationMode | |
SEG_QUESTIONS = [ | |
"Can you segment the {class_name} in this image?", | |
"Please segment {class_name} in this image.", | |
"What is {class_name} in this image? Please respond with segmentation mask.", | |
"What is {class_name} in this image? Please output segmentation mask.", | |
"Can you segment the {class_name} in this image", | |
"Please segment {class_name} in this image", | |
"What is {class_name} in this image? Please respond with segmentation mask", | |
"What is {class_name} in this image? Please output segmentation mask", | |
"Could you provide a segmentation mask for the {class_name} in this image?", | |
"Please identify and segment the {class_name} in this image.", | |
"Where is the {class_name} in this picture? Please respond with a segmentation mask.", | |
"Can you highlight the {class_name} in this image with a segmentation mask?", | |
"Could you provide a segmentation mask for the {class_name} in this image", | |
"Please identify and segment the {class_name} in this image", | |
"Where is the {class_name} in this picture? Please respond with a segmentation mask", | |
"Can you highlight the {class_name} in this image with a segmentation mask", | |
] | |
ANSWER_LIST = [ | |
"It is [SEG].", | |
"Sure, [SEG].", | |
"Sure, it is [SEG].", | |
"Sure, the segmentation result is [SEG].", | |
"[SEG].", | |
] | |
class VideoReVOSDataset(Dataset): | |
IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_STD = (0.229, 0.224, 0.225) | |
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>' | |
IMG_START_TOKEN = '<img>' | |
IMG_END_TOKEN = '</img>' | |
FAST_IMG_CONTEXT_TOKEN = '<FAST_IMG_CONTEXT>' | |
FAST_IMG_START_TOKEN = '<fast_img>' | |
FAST_IMG_END_TOKEN = '</fast_img>' | |
def __init__(self, | |
image_folder, | |
expression_file, | |
mask_file, | |
extra_image_processor=None, | |
tokenizer=None, | |
select_number=5, | |
sampled_frames=10, | |
offline_processed_text_folder=None, | |
template_map_fn=None, | |
max_length=2048, | |
lazy=True, | |
repeats=1, | |
special_tokens=None, | |
frame_contiguous_sample=False, | |
use_fast=False, | |
arch_type: Literal['intern_vl', 'qwen'] = 'intern_vl', | |
preprocessor=None, | |
# only work if use_fast = True | |
n_fast_images=50, | |
fast_pool_size=4, | |
fast_token_after_question=False, | |
): | |
assert lazy is True | |
self.tokenizer = BUILDER.build(tokenizer) | |
self.select_number = select_number | |
self.sampled_frames = sampled_frames | |
assert offline_processed_text_folder or (expression_file and tokenizer) | |
self.lazy = lazy | |
self.max_length = max_length | |
self.template_map_fn = template_map_fn | |
if isinstance(self.template_map_fn, dict) and self.lazy: | |
_type = self.template_map_fn['type'] | |
del self.template_map_fn['type'] | |
self.template_map_fn = _type(**self.template_map_fn) | |
if offline_processed_text_folder and expression_file: | |
print_log( | |
'Both `offline_processed_text_folder` and ' | |
'`data_path` are set, and we load dataset from' | |
'`offline_processed_text_folder` ' | |
f'({offline_processed_text_folder})', | |
logger='current', | |
level=logging.WARNING) | |
self.arch_type = arch_type | |
if self.arch_type == 'qwen': | |
self.IMG_CONTEXT_TOKEN = '<|image_pad|>' | |
self.IMG_START_TOKEN = '<|vision_start|>' | |
self.IMG_END_TOKEN = '<|vision_end|>' | |
elif self.arch_type == 'llava': | |
self.IMG_CONTEXT_TOKEN = '<image>' | |
self.IMG_START_TOKEN = '' | |
self.IMG_END_TOKEN = '' | |
if offline_processed_text_folder is not None: | |
raise NotImplementedError | |
else: | |
vid2metaid, metas, mask_dict = self.json_file_preprocess(expression_file, mask_file) | |
self.vid2metaid = vid2metaid | |
self.videos = list(self.vid2metaid.keys()) | |
self.mask_dict = mask_dict | |
self.json_datas = metas | |
json_datas = metas | |
json_data = DatasetDict({'train': HFDataset.from_list(json_datas)}) | |
if self.lazy: | |
self.text_data = build_origin_dataset(json_data, 'train') | |
else: | |
raise NotImplementedError | |
self.image_folder = image_folder | |
if extra_image_processor is not None: | |
self.extra_image_processor = BUILDER.build(extra_image_processor) | |
self.down_ratio = 1 | |
self.repeats = repeats | |
self._system = '' | |
self.downsample_ratio = 0.5 | |
if self.arch_type == 'llava': | |
self.downsample_ratio = 1 | |
self.image_size = 448 | |
if self.arch_type == 'llava': | |
self.image_size = 336 | |
patch_size = 14 | |
self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2)) | |
if self.arch_type == 'qwen': | |
self.patch_token = 1 | |
if preprocessor is None: | |
self.transformer = T.Compose([ | |
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | |
T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC), | |
T.ToTensor(), | |
T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD) | |
]) | |
self.preprocessor = None | |
else: | |
self.transformer = None | |
self.preprocessor = BUILDER.build(preprocessor) | |
if special_tokens is not None: | |
self.tokenizer.add_tokens(special_tokens, special_tokens=True) | |
self.use_fast = use_fast | |
self.n_fast_images = n_fast_images | |
self.fast_pool_size = fast_pool_size | |
self.frame_contiguous_sample = frame_contiguous_sample | |
# for visualization debug | |
self.save_folder = './work_dirs/video_debug/' | |
self.cur_number = 0 | |
# exist_thr | |
self.exist_thr = 8 | |
self.fast_token_after_question = fast_token_after_question | |
if self.fast_token_after_question: | |
assert self.use_fast | |
print("Video res dataset, include {} items.".format(len(self.vid2metaid))) | |
def __len__(self): | |
return len(self.vid2metaid) * self.repeats | |
def modality_length(self): | |
length_list = [] | |
for data_dict in self.vid2metaid: | |
cur_len = 10000 | |
length_list.append(cur_len) | |
return length_list | |
def real_len(self): | |
return len(self.vid2metaid) | |
def json_file_preprocess(self, expression_file, mask_file): | |
# prepare expression annotation files | |
with open(expression_file, 'r') as f: | |
expression_datas = json.load(f)['videos'] | |
metas = [] | |
anno_count = 0 # serve as anno_id | |
vid2metaid = {} | |
for vid_name in expression_datas: | |
vid_express_data = expression_datas[vid_name] | |
vid_frames = sorted(vid_express_data['frames']) | |
vid_len = len(vid_frames) | |
exp_id_list = sorted(list(vid_express_data['expressions'].keys())) | |
for exp_id in exp_id_list: | |
exp_dict = vid_express_data['expressions'][exp_id] | |
meta = {} | |
meta['video'] = vid_name | |
meta['exp'] = exp_dict['exp'] # str | |
meta['mask_anno_id'] = exp_dict['anno_id'] | |
if 'obj_id' in exp_dict.keys(): | |
meta['obj_id'] = exp_dict['obj_id'] | |
else: | |
meta['obj_id'] = [0, ] # Ref-Youtube-VOS only has one object per expression | |
meta['anno_id'] = [str(anno_count), ] | |
anno_count += 1 | |
meta['frames'] = vid_frames | |
meta['exp_id'] = exp_id | |
meta['length'] = vid_len | |
metas.append(meta) | |
if vid_name not in vid2metaid.keys(): | |
vid2metaid[vid_name] = [] | |
vid2metaid[vid_name].append(len(metas) - 1) | |
# process mask annotation files | |
with open(mask_file, 'rb') as f: | |
mask_dict = json.load(f) | |
return vid2metaid, metas, mask_dict | |
def create_img_to_refs_mapping(self, refs_train): | |
img2refs = {} | |
for ref in refs_train: | |
img2refs[ref["image_id"]] = img2refs.get(ref["image_id"], []) + [ref, ] | |
return img2refs | |
def decode_mask(self, video_masks, image_size): | |
ret_masks = [] | |
for object_masks in video_masks: | |
# None object | |
if len(object_masks) == 0: | |
if len(ret_masks) != 0: | |
_object_masks = ret_masks[0] * 0 | |
else: | |
_object_masks = np.zeros( | |
(self.sampled_frames, image_size[0], image_size[1]), dtype=np.uint8) | |
else: | |
_object_masks = [] | |
for i_frame in range(len(object_masks[0])): | |
_mask = np.zeros(image_size, dtype=np.uint8) | |
for i_anno in range(len(object_masks)): | |
if object_masks[i_anno][i_frame] is None: | |
continue | |
m = maskUtils.decode(object_masks[i_anno][i_frame]) | |
if m.ndim == 3: | |
m = m.sum(axis=2).astype(np.uint8) | |
else: | |
m = m.astype(np.uint8) | |
_mask = _mask | m | |
_object_masks.append(_mask) | |
_object_masks = np.stack(_object_masks, axis=0) | |
# if self.pad_image_to_square: | |
# _object_masks = expand2square_mask(_object_masks) | |
ret_masks.append(_object_masks) | |
_shape = ret_masks[0].shape | |
for item in ret_masks: | |
if item.shape != _shape: | |
print([_ret_mask.shape for _ret_mask in ret_masks]) | |
return None | |
ret_masks = np.stack(ret_masks, axis=0) # (n_obj, n_frames, h, w) | |
ret_masks = torch.from_numpy(ret_masks) | |
# ret_masks = F.interpolate(ret_masks, size=(self.image_size // self.down_ratio, | |
# self.image_size // self.down_ratio), mode='nearest') | |
ret_masks = ret_masks.flatten(0, 1) | |
return ret_masks | |
def dataset_map_fn(self, data_dict, select_k=5): | |
images = [] | |
len_frames = len(data_dict[0]['frames']) | |
for objet_info in data_dict: | |
assert len_frames == len(objet_info['frames']) | |
# prepare images, random select k frames | |
if len_frames > select_k + 1: | |
if self.frame_contiguous_sample and random.random() < 0.5: | |
# do contiguous sample | |
selected_start_frame = np.random.choice(len_frames - select_k, 1, replace=False) | |
selected_frame_indexes = [selected_start_frame[0] + _i for _i in range(select_k)] | |
else: | |
selected_frame_indexes = np.random.choice(len_frames, select_k, replace=False) | |
else: | |
selected_frame_indexes = np.random.choice(len_frames, select_k, replace=True) | |
selected_frame_indexes.sort() | |
if self.use_fast: | |
# sample fast branch | |
fast_interval = len_frames / (self.n_fast_images + 1e-4) | |
sampled_fast_frame_idxs = [min(int(i * fast_interval), len_frames - 1) for i in range(self.n_fast_images)] | |
fast_video_frames = [] | |
for selected_frame_index in sampled_fast_frame_idxs: | |
frame_id = data_dict[0]['frames'][selected_frame_index] | |
fast_video_frames.append(os.path.join(data_dict[0]['video'], frame_id + '.jpg')) | |
else: | |
fast_video_frames = None | |
sampled_fast_frame_idxs = None | |
for selected_frame_index in selected_frame_indexes: | |
frame_id = data_dict[0]['frames'][selected_frame_index] | |
images.append(os.path.join(data_dict[0]['video'], frame_id + '.jpg')) | |
# prepare text | |
expressions = [object_info['exp'] for object_info in data_dict] | |
if self.use_fast: | |
text_dict = self.prepare_text(select_k, expressions, num_image_tokens=self.patch_token, | |
n_fast_images=len(fast_video_frames),) | |
else: | |
text_dict = self.prepare_text(select_k, expressions, num_image_tokens=self.patch_token) | |
# prepare masks | |
video_masks = [] | |
for object_info in data_dict: | |
anno_ids = object_info['mask_anno_id'] | |
# print('anno_ids: ', anno_ids) | |
obj_masks = [] | |
for anno_id in anno_ids: | |
anno_id = str(anno_id) | |
frames_masks = self.mask_dict[anno_id] | |
frames_masks_ = [] | |
for frame_idx in selected_frame_indexes: | |
frames_masks_.append(copy.deepcopy(frames_masks[frame_idx])) | |
obj_masks.append(frames_masks_) | |
video_masks.append(obj_masks) | |
if self.use_fast: | |
fast_video_masks = [] | |
assert sampled_fast_frame_idxs is not None | |
for object_info in data_dict: | |
anno_ids = object_info['mask_anno_id'] | |
obj_masks = [] | |
for anno_id in anno_ids: | |
anno_id = str(anno_id) | |
frames_masks = self.mask_dict[anno_id] | |
frames_masks_ = [] | |
for frame_idx in sampled_fast_frame_idxs: | |
frames_masks_.append(copy.deepcopy(frames_masks[frame_idx])) | |
obj_masks.append(frames_masks_) | |
fast_video_masks.append(obj_masks) | |
else: | |
fast_video_masks = None | |
ret = {'images': images, 'video_masks': video_masks, 'conversation': text_dict['conversation'], | |
'fast_images': fast_video_frames, 'fast_video_masks': fast_video_masks} | |
return ret | |
def prepare_text(self, n_frames, expressions, num_image_tokens=256, n_fast_images=50): | |
if self.use_fast and not self.fast_token_after_question: | |
fast_frame_token_str = f'{self.FAST_IMG_START_TOKEN}' \ | |
f'{self.FAST_IMG_CONTEXT_TOKEN * n_fast_images * self.fast_pool_size * self.fast_pool_size}' \ | |
f'{self.FAST_IMG_END_TOKEN}' + '\n' | |
else: | |
fast_frame_token_str = '' | |
frame_token_str = f'{self.IMG_START_TOKEN}' \ | |
f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \ | |
f'{self.IMG_END_TOKEN}' | |
if self.fast_token_after_question: | |
assert self.use_fast | |
after_question_str = f'{self.FAST_IMG_START_TOKEN}' \ | |
f'{self.FAST_IMG_CONTEXT_TOKEN * n_fast_images * self.fast_pool_size * self.fast_pool_size}' \ | |
f'{self.FAST_IMG_END_TOKEN}' | |
else: | |
after_question_str = '' | |
questions = [] | |
answers = [] | |
for i, exp in enumerate(expressions): | |
# the exp is a question | |
if '?' in exp: | |
questions.append(exp) | |
else: | |
exp = exp.replace('.', '').strip() | |
question_template = random.choice(SEG_QUESTIONS) | |
questions.append(question_template.format(class_name=exp.lower())) | |
answers.append(random.choice(ANSWER_LIST)) | |
qa_list = [] | |
for i, (question, answer) in enumerate(zip(questions, answers)): | |
if i == 0: | |
frame_tokens = frame_token_str + '\n' | |
# frame_tokens = '=' + ' ' | |
frame_tokens = frame_tokens * n_frames | |
frame_tokens = frame_tokens.strip() | |
frame_tokens = fast_frame_token_str + frame_tokens | |
qa_list.append( | |
{'from': 'human', 'value': frame_tokens + question + after_question_str} | |
) | |
else: | |
qa_list.append( | |
{'from': 'human', 'value': question + after_question_str} | |
) | |
qa_list.append( | |
{'from': 'gpt', 'value': answer} | |
) | |
input = '' | |
conversation = [] | |
for msg in qa_list: | |
if msg['from'] == 'human': | |
input += msg['value'] | |
elif msg['from'] == 'gpt': | |
conversation.append({'input': input, 'output': msg['value']}) | |
input = '' | |
else: | |
raise NotImplementedError | |
# add system information | |
conversation[0].update({'system': self._system}) | |
return {'conversation': conversation} | |
def __getitem__(self, index): | |
index = index % self.real_len() | |
selected_video_objects = self.vid2metaid[self.videos[index]] | |
video_objects_infos = [copy.deepcopy(self.text_data[idx]) for idx in selected_video_objects] | |
if len(video_objects_infos) > self.select_number: | |
selected_indexes = np.random.choice(len(video_objects_infos), self.select_number) | |
video_objects_infos = [video_objects_infos[_idx] for _idx in selected_indexes] | |
else: | |
selected_indexes = np.random.choice(len(video_objects_infos), self.select_number, replace=True) | |
video_objects_infos = [video_objects_infos[_idx] for _idx in selected_indexes] | |
data_dict = self.dataset_map_fn(video_objects_infos, select_k=self.sampled_frames) | |
assert 'images' in data_dict.keys() | |
pixel_values = [] | |
extra_pixel_values = [] | |
num_video_tokens = None | |
num_frame_tokens = None | |
if data_dict.get('images', None) is not None: | |
frames_files = data_dict['images'] | |
frames_files = [os.path.join(self.image_folder, frame_file) for frame_file in frames_files] | |
for frame_path in frames_files: | |
frame_image = Image.open(frame_path).convert('RGB') | |
ori_width, ori_height = frame_image.size | |
if self.extra_image_processor is not None: | |
g_image = np.array(frame_image) # for grounding | |
g_image = self.extra_image_processor.apply_image(g_image) | |
g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous() | |
extra_pixel_values.append(g_pixel_values) | |
if self.preprocessor is not None: | |
pass | |
else: | |
frame_image = self.transformer(frame_image) | |
pixel_values.append(frame_image) | |
if self.preprocessor is not None: | |
if self.arch_type == 'qwen': | |
_data_dict = self.preprocessor(pixel_values, do_resize=True, size=(self.image_size, self.image_size)) | |
_data_dict['pixel_values'] = torch.tensor(_data_dict['pixel_values'], dtype=torch.float) | |
_data_dict['image_grid_thw'] = torch.tensor(_data_dict['image_grid_thw'], dtype=torch.int) | |
num_frame_tokens = int(_data_dict['image_grid_thw'][0].prod() * (self.downsample_ratio ** 2)) | |
num_frames = _data_dict['image_grid_thw'].shape[0] | |
num_video_tokens = num_frame_tokens * num_frames | |
elif self.arch_type == 'llava': | |
_data_dict = self.preprocessor(pixel_values, do_resize=True, size=(self.image_size, self.image_size)) | |
_data_dict['pixel_values'] = np.stack(_data_dict['pixel_values'], axis=0) | |
_data_dict['pixel_values'] = torch.tensor(_data_dict['pixel_values'], dtype=torch.float) | |
else: | |
raise NotImplementedError | |
data_dict.update(_data_dict) | |
else: | |
pixel_values = torch.stack(pixel_values, dim=0) # (n_f, 3, h, w) | |
data_dict['pixel_values'] = pixel_values | |
if self.extra_image_processor is not None: | |
data_dict['g_pixel_values'] = extra_pixel_values | |
# process and get masks | |
masks = self.decode_mask(data_dict['video_masks'], image_size=(ori_height, ori_width)) | |
if masks is None: | |
return self.__getitem__(random.randint(0, self.real_len())) | |
data_dict['masks'] = masks | |
else: | |
data_dict['pixel_values'] = torch.zeros(0, 3, self.image_size, self.image_size) | |
data_dict['masks'] = None | |
if num_video_tokens is not None: | |
assert self.patch_token == 1 | |
input_str = data_dict['conversation'][0]['input'] | |
input_str = input_str.replace(self.IMG_CONTEXT_TOKEN, self.IMG_CONTEXT_TOKEN * num_frame_tokens) | |
assert input_str.count(self.IMG_CONTEXT_TOKEN) == num_video_tokens | |
data_dict['conversation'][0]['input'] = input_str | |
result = self.template_map_fn(data_dict) | |
data_dict.update(result) | |
result = video_lisa_encode_fn(data_dict, tokenizer=self.tokenizer, max_length=self.max_length) | |
data_dict.update(result) | |
# for fast branch | |
if self.use_fast: | |
fast_pixel_values = [] | |
frames_files = data_dict['fast_images'] | |
frames_files = [os.path.join(self.image_folder, frame_file) for frame_file in frames_files] | |
for frame_path in frames_files: | |
frame_image = Image.open(frame_path).convert('RGB') | |
ori_width, ori_height = frame_image.size | |
frame_image = self.transformer(frame_image) | |
fast_pixel_values.append(frame_image) | |
fast_pixel_values = torch.stack(fast_pixel_values, dim=0) # (n_f, 3, h, w) | |
data_dict['fast_pixel_values'] = fast_pixel_values | |
# process and get masks | |
masks = self.decode_mask(data_dict['fast_video_masks'], image_size=(ori_height, ori_width)) | |
if masks is None: | |
return self.__getitem__(random.randint(0, self.real_len())) | |
data_dict['fast_exists'] = masks.to(dtype=torch.int).sum(dim=(-2, -1)).ge(self.exist_thr).unsqueeze(-1) | |
del data_dict['fast_video_masks'] | |
data_dict['type'] = 'video' | |
return data_dict | |
def visualization_debug(self, data_dict): | |
save_folder = os.path.join(self.save_folder, 'sample_{}'.format(self.cur_number)) | |
if not os.path.exists(save_folder): | |
os.mkdir(save_folder) | |
self.cur_number += 1 | |
# images | |
show_images = [] | |
pixel_values = data_dict['pixel_values'] | |
save_folder_image = os.path.join(save_folder, 'image') | |
if not os.path.exists(save_folder_image): | |
os.mkdir(save_folder_image) | |
for i_image, image_pixel_value in enumerate(pixel_values): | |
# print(image_pixel_value.shape) | |
image_pixel_value[0] = image_pixel_value[0] * 0.2686 | |
image_pixel_value[1] = image_pixel_value[1] * 0.2613 | |
image_pixel_value[2] = image_pixel_value[2] * 0.2757 | |
image_pixel_value[0] = image_pixel_value[0] + 0.4814 | |
image_pixel_value[1] = image_pixel_value[1] + 0.4578 | |
image_pixel_value[2] = image_pixel_value[2] + 0.4082 | |
image_pixel_value = image_pixel_value * 255 | |
image_pixel_value = image_pixel_value.permute(1, 2, 0) | |
image_pixel_value = image_pixel_value.to(torch.uint8).numpy() | |
# print(os.path.join(save_folder_image, '{}.jpg'.format(i_image))) | |
# print(image_pixel_value.shape) | |
show_images.append(image_pixel_value) | |
cv2.imwrite(os.path.join(save_folder_image, '{}.jpg'.format(i_image)), image_pixel_value) | |
# text | |
input_text = self.tokenizer.decode(data_dict['input_ids'], skip_special_tokens=False) | |
with open(os.path.join(save_folder, 'text.json'), 'w') as f: | |
json.dump([input_text], f) | |
# masks | |
save_folder_mask = os.path.join(save_folder, 'mask') | |
if not os.path.exists(save_folder_mask): | |
os.mkdir(save_folder_mask) | |
n_frames = len(pixel_values) | |
masks = data_dict['masks'] | |
_, h, w = masks.shape | |
masks = masks.reshape(-1, n_frames, h, w) | |
for i_obj, obj_masks in enumerate(masks): | |
save_folder_mask_obj_folder = os.path.join(save_folder_mask, 'obj_{}'.format(i_obj)) | |
if not os.path.exists(save_folder_mask_obj_folder): | |
os.mkdir(save_folder_mask_obj_folder) | |
for i_frame, f_mask in enumerate(obj_masks): | |
f_mask = f_mask.numpy() | |
f_mask = f_mask * 255 | |
f_mask = np.stack([f_mask * 1, f_mask * 0, f_mask * 0], axis=2) | |
f_mask = show_images[i_frame] * 0.3 + 0.7 * f_mask | |
f_mask = f_mask.astype(np.uint8) | |
cv2.imwrite(os.path.join(save_folder_mask_obj_folder, '{}.png'.format(i_frame)), f_mask) | |
return | |