Spaces:
Running
on
Zero
Running
on
Zero
import logging | |
import os | |
from typing import Literal | |
import torch | |
from datasets import Dataset as HFDataset | |
from datasets import DatasetDict, load_from_disk | |
from mmengine import print_log | |
from PIL import Image | |
from torch.utils.data import Dataset | |
import numpy as np | |
from xtuner.registry import BUILDER | |
from xtuner.dataset.huggingface import build_origin_dataset | |
import copy | |
from .encode_fn import video_lisa_encode_fn | |
import json | |
import cv2 | |
import torchvision.transforms as T | |
from torchvision.transforms.functional import InterpolationMode | |
from decord import VideoReader, cpu | |
def _get_rawvideo_dec(video_path, select_frames=5): | |
if os.path.exists(video_path): | |
vreader = VideoReader(video_path, ctx=cpu(0)) | |
elif os.path.exists(video_path.replace('mkv', 'mp4')): | |
vreader = VideoReader(video_path.replace('mkv', 'mp4'), ctx=cpu(0)) | |
else: | |
print(video_path) | |
raise FileNotFoundError | |
fps = vreader.get_avg_fps() | |
f_start = 0 | |
f_end = len(vreader) - 1 | |
num_frames = f_end - f_start + 1 | |
assert num_frames > 0, f'num_frames: {num_frames}, f_start: {f_start}, f_end: {f_end}, fps: {fps}, video_path: {video_path}' | |
# T x 3 x H x W | |
if num_frames <= select_frames: | |
sample_pos = range(f_start, f_end + 1) | |
else: | |
split_point = np.linspace(0, num_frames, num=select_frames+1, dtype=int) | |
sample_pos = [np.random.randint(split_point[i], split_point[i+1]) for i in range(select_frames)] | |
patch_images = [Image.fromarray(f) for f in vreader.get_batch(sample_pos).asnumpy()] | |
return patch_images | |
class VideoChatUniViDataset(Dataset): | |
IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_STD = (0.229, 0.224, 0.225) | |
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>' | |
IMG_START_TOKEN = '<img>' | |
IMG_END_TOKEN = '</img>' | |
FAST_IMG_CONTEXT_TOKEN = '<FAST_IMG_CONTEXT>' | |
FAST_IMG_START_TOKEN = '<fast_img>' | |
FAST_IMG_END_TOKEN = '</fast_img>' | |
def __init__(self, | |
image_folder, | |
json_file, | |
extra_image_processor=None, | |
tokenizer=None, | |
sampled_frames=10, | |
offline_processed_text_folder=None, | |
template_map_fn=None, | |
max_length=2048, | |
lazy=True, | |
repeats=1, | |
special_tokens=None, | |
use_fast=False, | |
n_fast_images=50, | |
fast_pool_size=4, | |
arch_type: Literal['intern_vl', 'qwen'] = 'intern_vl', | |
preprocessor=None, | |
): | |
assert lazy is True | |
self.tokenizer = BUILDER.build(tokenizer) | |
self.sampled_frames = sampled_frames | |
assert offline_processed_text_folder or (json_file and tokenizer) | |
self.lazy = lazy | |
self.max_length = max_length | |
self.template_map_fn = template_map_fn | |
if isinstance(self.template_map_fn, dict) and self.lazy: | |
_type = self.template_map_fn['type'] | |
del self.template_map_fn['type'] | |
self.template_map_fn = _type(**self.template_map_fn) | |
if offline_processed_text_folder and json_file: | |
print_log( | |
'Both `offline_processed_text_folder` and ' | |
'`data_path` are set, and we load dataset from' | |
'`offline_processed_text_folder` ' | |
f'({offline_processed_text_folder})', | |
logger='current', | |
level=logging.WARNING) | |
if offline_processed_text_folder is not None: | |
raise NotImplementedError | |
else: | |
json_datas = self.json_file_preprocess(json_file) | |
self.json_datas = json_datas | |
json_data = DatasetDict({'train': HFDataset.from_list(json_datas)}) | |
if self.lazy: | |
self.text_data = build_origin_dataset(json_data, 'train') | |
else: | |
raise NotImplementedError | |
self.image_folder = image_folder | |
if extra_image_processor is not None: | |
self.extra_image_processor = BUILDER.build(extra_image_processor) | |
self.arch_type = arch_type | |
if self.arch_type == 'qwen': | |
self.IMG_CONTEXT_TOKEN = '<|image_pad|>' | |
self.IMG_START_TOKEN = '<|vision_start|>' | |
self.IMG_END_TOKEN = '<|vision_end|>' | |
elif self.arch_type == 'llava': | |
self.IMG_CONTEXT_TOKEN = '<image>' | |
self.IMG_START_TOKEN = '' | |
self.IMG_END_TOKEN = '' | |
self.repeats = repeats | |
self._system = '' | |
self.downsample_ratio = 0.5 | |
if self.arch_type == 'llava': | |
self.downsample_ratio = 1 | |
self.image_size = 448 | |
if self.arch_type == 'llava': | |
self.image_size = 336 | |
patch_size = 14 | |
self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2)) | |
if self.arch_type == 'qwen': | |
self.patch_token = 1 | |
if preprocessor is None: | |
self.transformer = T.Compose([ | |
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | |
T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC), | |
T.ToTensor(), | |
T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD) | |
]) | |
self.preprocessor = None | |
else: | |
self.transformer = None | |
self.preprocessor = BUILDER.build(preprocessor) | |
self.arch_type = arch_type | |
if special_tokens is not None: | |
self.tokenizer.add_tokens(special_tokens, special_tokens=True) | |
self.use_fast = use_fast | |
self.n_fast_images = n_fast_images | |
self.fast_pool_size = fast_pool_size | |
# for visualization debug | |
self.save_folder = './work_dirs/video_debug/' | |
self.cur_number = 0 | |
print("Video Chat dataset, include {} items.".format(len(self.text_data))) | |
def __len__(self): | |
return len(self.text_data) * self.repeats | |
def modality_length(self): | |
length_list = [] | |
for data_dict in self.text_data: | |
cur_len = 10000 | |
length_list.append(cur_len) | |
return length_list | |
def real_len(self): | |
return len(self.text_data) | |
def json_file_preprocess(self, json_file): | |
# prepare expression annotation files | |
with open(json_file, 'r') as f: | |
json_datas = json.load(f) | |
return json_datas | |
def dataset_map_fn(self, data_dict, select_k=5): | |
assert 'video' in data_dict | |
# video | |
video_file = data_dict['video'] | |
video_file = os.path.join(self.image_folder, video_file) | |
images = _get_rawvideo_dec(video_file, select_frames=select_k) | |
if self.use_fast: | |
fast_images = _get_rawvideo_dec(video_file, select_frames=self.n_fast_images) | |
else: | |
fast_images = None | |
conversation = data_dict['conversations'] | |
# prepare text | |
if self.use_fast: | |
text_dict = self.prepare_text( | |
select_k, conversation, num_image_tokens=self.patch_token, | |
n_fast_images=len(fast_images), | |
) | |
else: | |
text_dict = self.prepare_text( | |
select_k, conversation, num_image_tokens=self.patch_token, | |
) | |
ret = {'images': images, 'conversation': text_dict['conversation'], 'fast_images': fast_images} | |
return ret | |
def prepare_text(self, n_frames, conversation, num_image_tokens=256, n_fast_images=0): | |
if self.use_fast: | |
fast_frame_token_str = f'{self.FAST_IMG_START_TOKEN}' \ | |
f'{self.FAST_IMG_CONTEXT_TOKEN * n_fast_images * self.fast_pool_size * self.fast_pool_size}' \ | |
f'{self.FAST_IMG_END_TOKEN}' + '\n' | |
else: | |
fast_frame_token_str = '' | |
frame_token_str = f'{self.IMG_START_TOKEN}' \ | |
f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \ | |
f'{self.IMG_END_TOKEN}' | |
questions = [] | |
answers = [] | |
for conv in conversation: | |
if conv['from'] == 'human': | |
questions.append(conv['value'].replace('<image>', '')) | |
else: | |
answers.append(conv['value']) | |
assert len(questions) == len(answers) | |
qa_list = [] | |
for i, (question, answer) in enumerate(zip(questions, answers)): | |
if i == 0: | |
frame_tokens = frame_token_str + '\n' | |
# frame_tokens = '=' + ' ' | |
frame_tokens = frame_tokens * n_frames | |
frame_tokens = frame_tokens.strip() | |
frame_tokens = fast_frame_token_str + frame_tokens | |
qa_list.append( | |
{'from': 'human', 'value': frame_tokens + question} | |
) | |
else: | |
qa_list.append( | |
{'from': 'human', 'value': question} | |
) | |
qa_list.append( | |
{'from': 'gpt', 'value': answer} | |
) | |
input = '' | |
conversation = [] | |
for msg in qa_list: | |
if msg['from'] == 'human': | |
input += msg['value'] | |
elif msg['from'] == 'gpt': | |
conversation.append({'input': input, 'output': msg['value']}) | |
input = '' | |
else: | |
raise NotImplementedError | |
# add system information | |
conversation[0].update({'system': self._system}) | |
return {'conversation': conversation} | |
def __getitem__(self, index): | |
index = index % self.real_len() | |
selected_data_dict = copy.deepcopy(self.text_data[index]) | |
data_dict = self.dataset_map_fn(selected_data_dict, select_k=self.sampled_frames) | |
assert 'images' in data_dict.keys() | |
if self.use_fast: | |
assert 'fast_images' in data_dict.keys() | |
pixel_values = [] | |
num_video_tokens = None | |
num_frame_tokens = None | |
if data_dict.get('images', None) is not None: | |
frames_files = data_dict['images'] | |
for frame_image in frames_files: | |
frame_image = frame_image.convert('RGB') | |
ori_width, ori_height = frame_image.size | |
if self.preprocessor is not None: | |
pass | |
else: | |
frame_image = self.transformer(frame_image) | |
pixel_values.append(frame_image) | |
if self.preprocessor is not None: | |
if self.arch_type == 'qwen': | |
_data_dict = self.preprocessor(pixel_values, do_resize=True, size=(self.image_size, self.image_size)) | |
_data_dict['pixel_values'] = torch.tensor(_data_dict['pixel_values'], dtype=torch.float) | |
_data_dict['image_grid_thw'] = torch.tensor(_data_dict['image_grid_thw'], dtype=torch.int) | |
num_frame_tokens = int(_data_dict['image_grid_thw'][0].prod() * (self.downsample_ratio ** 2)) | |
num_frames = _data_dict['image_grid_thw'].shape[0] | |
num_video_tokens = num_frame_tokens * num_frames | |
elif self.arch_type == 'llava': | |
_data_dict = self.preprocessor(pixel_values, do_resize=True, | |
size=(self.image_size, self.image_size)) | |
_data_dict['pixel_values'] = np.stack(_data_dict['pixel_values'], axis=0) | |
_data_dict['pixel_values'] = torch.tensor(_data_dict['pixel_values'], dtype=torch.float) | |
else: | |
raise NotImplementedError | |
data_dict.update(_data_dict) | |
else: | |
pixel_values = torch.stack(pixel_values, dim=0) # (n_f, 3, h, w) | |
data_dict['pixel_values'] = pixel_values | |
else: | |
data_dict['pixel_values'] = torch.zeros(0, 3, self.image_size, self.image_size) | |
data_dict['masks'] = None | |
if num_video_tokens is not None: | |
assert self.patch_token == 1 | |
input_str = data_dict['conversation'][0]['input'] | |
input_str = input_str.replace(self.IMG_CONTEXT_TOKEN, self.IMG_CONTEXT_TOKEN * num_frame_tokens) | |
assert input_str.count(self.IMG_CONTEXT_TOKEN) == num_video_tokens | |
data_dict['conversation'][0]['input'] = input_str | |
result = self.template_map_fn(data_dict) | |
data_dict.update(result) | |
result = video_lisa_encode_fn(data_dict, tokenizer=self.tokenizer, max_length=self.max_length, with_image_token=True) | |
data_dict.update(result) | |
# for fast branch | |
if self.use_fast: | |
fast_pixel_values = [] | |
frames_files = data_dict['fast_images'] | |
for frame_image in frames_files: | |
frame_image = frame_image.convert('RGB') | |
ori_width, ori_height = frame_image.size | |
frame_image = self.transformer(frame_image) | |
fast_pixel_values.append(frame_image) | |
fast_pixel_values = torch.stack(fast_pixel_values, dim=0) # (n_f, 3, h, w) | |
data_dict['fast_pixel_values'] = fast_pixel_values | |
# # for debug | |
# self.visualization_debug(data_dict) | |
# if self.cur_number < 10: | |
# return self[random.randint(0, len(self))] | |
data_dict['type'] = 'video' | |
return data_dict | |
def visualization_debug(self, data_dict): | |
save_folder = os.path.join(self.save_folder, 'sample_{}'.format(self.cur_number)) | |
if not os.path.exists(save_folder): | |
os.mkdir(save_folder) | |
self.cur_number += 1 | |
# images | |
show_images = [] | |
pixel_values = data_dict['pixel_values'] | |
save_folder_image = os.path.join(save_folder, 'image') | |
if not os.path.exists(save_folder_image): | |
os.mkdir(save_folder_image) | |
for i_image, image_pixel_value in enumerate(pixel_values): | |
# print(image_pixel_value.shape) | |
image_pixel_value[0] = image_pixel_value[0] * 0.2686 | |
image_pixel_value[1] = image_pixel_value[1] * 0.2613 | |
image_pixel_value[2] = image_pixel_value[2] * 0.2757 | |
image_pixel_value[0] = image_pixel_value[0] + 0.4814 | |
image_pixel_value[1] = image_pixel_value[1] + 0.4578 | |
image_pixel_value[2] = image_pixel_value[2] + 0.4082 | |
image_pixel_value = image_pixel_value * 255 | |
image_pixel_value = image_pixel_value.permute(1, 2, 0) | |
image_pixel_value = image_pixel_value.to(torch.uint8).numpy() | |
# print(os.path.join(save_folder_image, '{}.jpg'.format(i_image))) | |
# print(image_pixel_value.shape) | |
show_images.append(image_pixel_value) | |
cv2.imwrite(os.path.join(save_folder_image, '{}.jpg'.format(i_image)), image_pixel_value) | |
# text | |
input_text = self.tokenizer.decode(data_dict['input_ids'], skip_special_tokens=False) | |
with open(os.path.join(save_folder, 'text.json'), 'w') as f: | |
json.dump([input_text], f) | |
return | |