|
""" |
|
Copyright (c) Meta Platforms, Inc. and affiliates. |
|
All rights reserved. |
|
|
|
This source code is licensed under the license found in the |
|
LICENSE file in the root directory of this source tree. |
|
""" |
|
|
|
from tempfile import NamedTemporaryFile |
|
import argparse |
|
import torch |
|
import gradio as gr |
|
import os |
|
from audiocraft.models import MusicGen |
|
from audiocraft.data.audio import audio_write |
|
|
|
MODEL = None |
|
IS_SHARED_SPACE = "musicgen/MusicGen" in os.environ.get('SPACE_ID', '') |
|
|
|
|
|
def load_model(version): |
|
print("Loading model", version) |
|
return MusicGen.get_pretrained(version) |
|
|
|
|
|
def predict(model, text, melody, duration, topk, topp, temperature, cfg_coef): |
|
global MODEL |
|
topk = int(topk) |
|
if MODEL is None or MODEL.name != model: |
|
MODEL = load_model(model) |
|
|
|
if duration > MODEL.lm.cfg.dataset.segment_duration: |
|
raise gr.Error("MusicGen currently supports durations of up to 30 seconds!") |
|
MODEL.set_generation_params( |
|
use_sampling=True, |
|
top_k=topk, |
|
top_p=topp, |
|
temperature=temperature, |
|
cfg_coef=cfg_coef, |
|
duration=duration, |
|
) |
|
|
|
if melody: |
|
sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t().unsqueeze(0) |
|
print(melody.shape) |
|
if melody.dim() == 2: |
|
melody = melody[None] |
|
melody = melody[..., :int(sr * MODEL.lm.cfg.dataset.segment_duration)] |
|
output = MODEL.generate_with_chroma( |
|
descriptions=[text], |
|
melody_wavs=melody, |
|
melody_sample_rate=sr, |
|
progress=False |
|
) |
|
else: |
|
output = MODEL.generate(descriptions=[text], progress=False) |
|
|
|
output = output.detach().cpu().float()[0] |
|
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file: |
|
audio_write( |
|
file.name, output, MODEL.sample_rate, strategy="loudness", |
|
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False) |
|
waveform_video = gr.make_waveform(file.name) |
|
return waveform_video |
|
|
|
|
|
def ui(**kwargs): |
|
with gr.Blocks() as interface: |
|
gr.Markdown( |
|
""" |
|
# MusicGen |
|
This is your private demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation |
|
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284) |
|
""" |
|
) |
|
if IS_SHARED_SPACE: |
|
gr.Markdown(""" |
|
⚠ This Space doesn't work in this shared UI ⚠ |
|
|
|
<a href="https://huggingface.co/spaces/musicgen/MusicGen?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> |
|
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> |
|
to use it privately, or use the <a href="https://huggingface.co/spaces/facebook/MusicGen">public demo</a> |
|
""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
text = gr.Text(label="Input Text", interactive=True) |
|
melody = gr.Audio(source="upload", type="numpy", label="Melody Condition (optional)", interactive=True) |
|
with gr.Row(): |
|
submit = gr.Button("Submit") |
|
with gr.Row(): |
|
model = gr.Radio(["melody", "medium", "small", "large"], label="Model", value="melody", interactive=True) |
|
with gr.Row(): |
|
duration = gr.Slider(minimum=1, maximum=30, value=10, label="Duration", interactive=True) |
|
with gr.Row(): |
|
topk = gr.Number(label="Top-k", value=250, interactive=True) |
|
topp = gr.Number(label="Top-p", value=0, interactive=True) |
|
temperature = gr.Number(label="Temperature", value=1.0, interactive=True) |
|
cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True) |
|
with gr.Column(): |
|
output = gr.Video(label="Generated Music") |
|
submit.click(predict, inputs=[model, text, melody, duration, topk, topp, temperature, cfg_coef], outputs=[output]) |
|
gr.Examples( |
|
fn=predict, |
|
examples=[ |
|
[ |
|
"An 80s driving pop song with heavy drums and synth pads in the background", |
|
"./assets/bach.mp3", |
|
"melody" |
|
], |
|
[ |
|
"A cheerful country song with acoustic guitars", |
|
"./assets/bolero_ravel.mp3", |
|
"melody" |
|
], |
|
[ |
|
"90s rock song with electric guitar and heavy drums", |
|
None, |
|
"medium" |
|
], |
|
[ |
|
"a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions", |
|
"./assets/bach.mp3", |
|
"melody" |
|
], |
|
[ |
|
"lofi slow bpm electro chill with organic samples", |
|
None, |
|
"medium", |
|
], |
|
], |
|
inputs=[text, melody, model], |
|
outputs=[output] |
|
) |
|
gr.Markdown( |
|
""" |
|
### More details |
|
|
|
The model will generate a short music extract based on the description you provided. |
|
You can generate up to 30 seconds of audio. |
|
|
|
We present 4 model variations: |
|
1. Melody -- a music generation model capable of generating music condition on text and melody inputs. **Note**, you can also use text only. |
|
2. Small -- a 300M transformer decoder conditioned on text only. |
|
3. Medium -- a 1.5B transformer decoder conditioned on text only. |
|
4. Large -- a 3.3B transformer decoder conditioned on text only (might OOM for the longest sequences.) |
|
|
|
When using `melody`, ou can optionaly provide a reference audio from |
|
which a broad melody will be extracted. The model will then try to follow both the description and melody provided. |
|
|
|
You can also use your own GPU or a Google Colab by following the instructions on our repo. |
|
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft) |
|
for more details. |
|
""" |
|
) |
|
|
|
|
|
launch_kwargs = {} |
|
username = kwargs.get('username') |
|
password = kwargs.get('password') |
|
server_port = kwargs.get('server_port', 0) |
|
inbrowser = kwargs.get('inbrowser', False) |
|
share = kwargs.get('share', False) |
|
server_name = kwargs.get('listen') |
|
|
|
launch_kwargs['server_name'] = server_name |
|
|
|
if username and password: |
|
launch_kwargs['auth'] = (username, password) |
|
if server_port > 0: |
|
launch_kwargs['server_port'] = server_port |
|
if inbrowser: |
|
launch_kwargs['inbrowser'] = inbrowser |
|
if share: |
|
launch_kwargs['share'] = share |
|
|
|
interface.queue().launch(**launch_kwargs, max_threads=1) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
'--listen', |
|
type=str, |
|
default='127.0.0.1', |
|
help='IP to listen on for connections to Gradio', |
|
) |
|
parser.add_argument( |
|
'--username', type=str, default='', help='Username for authentication' |
|
) |
|
parser.add_argument( |
|
'--password', type=str, default='', help='Password for authentication' |
|
) |
|
parser.add_argument( |
|
'--server_port', |
|
type=int, |
|
default=0, |
|
help='Port to run the server listener on', |
|
) |
|
parser.add_argument( |
|
'--inbrowser', action='store_true', help='Open in browser' |
|
) |
|
parser.add_argument( |
|
'--share', action='store_true', help='Share the gradio UI' |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
ui( |
|
username=args.username, |
|
password=args.password, |
|
inbrowser=args.inbrowser, |
|
server_port=args.server_port, |
|
share=args.share, |
|
listen=args.listen |
|
) |
|
|