Spaces:
Sleeping
Sleeping
import time, logging | |
import os | |
import random, traceback | |
import numpy as np | |
import torch | |
import torch.utils.data | |
from tqdm import tqdm | |
from module import commons | |
from module.mel_processing import spectrogram_torch | |
from text import cleaned_text_to_sequence | |
from utils import load_wav_to_torch, load_filepaths_and_text | |
import torch.nn.functional as F | |
from functools import lru_cache | |
import torch | |
import requests | |
from scipy.io import wavfile | |
from io import BytesIO | |
# from config import exp_dir | |
from my_utils import load_audio | |
class TextAudioSpeakerLoader(torch.utils.data.Dataset): | |
""" | |
1) loads audio, speaker_id, text pairs | |
2) normalizes text and converts them to sequences of integers | |
3) computes spectrograms from audio files. | |
""" | |
def __init__(self, hparams, val=False): | |
exp_dir = hparams.exp_dir | |
self.path2 = "%s/2-name2text.txt" % exp_dir | |
self.path4 = "%s/4-cnhubert" % exp_dir | |
self.path5 = "%s/5-wav32k" % exp_dir | |
assert os.path.exists(self.path2) | |
assert os.path.exists(self.path4) | |
assert os.path.exists(self.path5) | |
names4 = set([name[:-3] for name in list(os.listdir(self.path4))]) # 去除.pt后缀 | |
names5 = set(os.listdir(self.path5)) | |
self.phoneme_data = {} | |
with open(self.path2, "r", encoding="utf8") as f: | |
lines = f.read().strip("\n").split("\n") | |
for line in lines: | |
tmp = line.split("\t") | |
if len(tmp) != 4: | |
continue | |
self.phoneme_data[tmp[0]] = [tmp[1]] | |
self.audiopaths_sid_text = list(set(self.phoneme_data) & names4 & names5) | |
tmp = self.audiopaths_sid_text | |
leng = len(tmp) | |
min_num = 100 | |
if leng < min_num: | |
self.audiopaths_sid_text = [] | |
for _ in range(max(2, int(min_num / leng))): | |
self.audiopaths_sid_text += tmp | |
self.max_wav_value = hparams.max_wav_value | |
self.sampling_rate = hparams.sampling_rate | |
self.filter_length = hparams.filter_length | |
self.hop_length = hparams.hop_length | |
self.win_length = hparams.win_length | |
self.sampling_rate = hparams.sampling_rate | |
self.val = val | |
random.seed(1234) | |
random.shuffle(self.audiopaths_sid_text) | |
print("phoneme_data_len:", len(self.phoneme_data.keys())) | |
print("wav_data_len:", len(self.audiopaths_sid_text)) | |
audiopaths_sid_text_new = [] | |
lengths = [] | |
skipped_phone = 0 | |
skipped_dur = 0 | |
for audiopath in tqdm(self.audiopaths_sid_text): | |
try: | |
phoneme = self.phoneme_data[audiopath][0] | |
phoneme = phoneme.split(" ") | |
phoneme_ids = cleaned_text_to_sequence(phoneme) | |
except Exception: | |
print(f"{audiopath} not in self.phoneme_data !") | |
skipped_phone += 1 | |
continue | |
size = os.path.getsize("%s/%s" % (self.path5, audiopath)) | |
duration = size / self.sampling_rate / 2 | |
if 54 > duration > 0.6 or self.val: | |
audiopaths_sid_text_new.append([audiopath, phoneme_ids]) | |
lengths.append(size // (2 * self.hop_length)) | |
else: | |
skipped_dur += 1 | |
continue | |
print("skipped_phone: ", skipped_phone, ", skipped_dur: ", skipped_dur) | |
print("total left: ", len(audiopaths_sid_text_new)) | |
assert len(audiopaths_sid_text_new) > 1 # 至少能凑够batch size,这里todo | |
self.audiopaths_sid_text = audiopaths_sid_text_new | |
self.lengths = lengths | |
def get_audio_text_speaker_pair(self, audiopath_sid_text): | |
audiopath, phoneme_ids = audiopath_sid_text | |
text = torch.FloatTensor(phoneme_ids) | |
try: | |
spec, wav = self.get_audio("%s/%s" % (self.path5, audiopath)) | |
with torch.no_grad(): | |
ssl = torch.load( | |
"%s/%s.pt" % (self.path4, audiopath), map_location="cpu" | |
) | |
if ssl.shape[-1] != spec.shape[-1]: | |
typee = ssl.dtype | |
ssl = F.pad(ssl.float(), (0, 1), mode="replicate").to(typee) | |
ssl.requires_grad = False | |
except: | |
traceback.print_exc() | |
spec = torch.zeros(1025, 100) | |
wav = torch.zeros(1, 100 * self.hop_length) | |
ssl = torch.zeros(1, 768, 100) | |
text = text[-1:] | |
print("load audio or ssl error!!!!!!", audiopath) | |
# print(ssl.requires_grad,spec.requires_grad,wav.requires_grad,text.requires_grad) | |
return (ssl, spec, wav, text) | |
def get_audio(self, filename): | |
audio_array = load_audio( | |
filename, self.sampling_rate | |
) # load_audio的方法是已经归一化到-1~1之间的,不用再/32768 | |
# print(filename,audio_array.max(),audio_array.min(),audio_array.mean()) | |
audio = torch.FloatTensor(audio_array) # /32768 | |
audio_norm = audio | |
audio_norm = audio_norm.unsqueeze(0) | |
spec = spectrogram_torch( | |
audio_norm, | |
self.filter_length, | |
self.sampling_rate, | |
self.hop_length, | |
self.win_length, | |
center=False, | |
) | |
spec = torch.squeeze(spec, 0) | |
return spec, audio_norm | |
def get_sid(self, sid): | |
sid = torch.LongTensor([int(sid)]) | |
return sid | |
def __getitem__(self, index): | |
# with torch.no_grad(): | |
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index]) | |
def __len__(self): | |
return len(self.audiopaths_sid_text) | |
def random_slice(self, ssl, wav, mel): | |
assert abs(ssl.shape[-1] - wav.shape[-1] // self.hop_length) < 3, ( | |
"first", | |
ssl.shape, | |
wav.shape, | |
) | |
len_mel = mel.shape[1] | |
if self.val: | |
reference_mel = mel[:, : len_mel // 3] | |
return reference_mel, ssl, wav, mel | |
dir = random.randint(0, 1) | |
sep_point = random.randint(int(len_mel // 3), int(len_mel // 3 * 2)) | |
if dir == 0: | |
reference_mel = mel[:, :sep_point] | |
ssl = ssl[:, :, sep_point:] | |
wav2 = wav[:, sep_point * self.hop_length :] | |
mel = mel[:, sep_point:] | |
else: | |
reference_mel = mel[:, sep_point:] | |
ssl = ssl[:, :, :sep_point] | |
wav2 = wav[:, : sep_point * self.hop_length] | |
mel = mel[:, :sep_point] | |
assert abs(ssl.shape[-1] - wav2.shape[-1] // self.hop_length) < 3, ( | |
ssl.shape, | |
wav.shape, | |
wav2.shape, | |
mel.shape, | |
sep_point, | |
self.hop_length, | |
sep_point * self.hop_length, | |
dir, | |
) | |
return reference_mel, ssl, wav2, mel | |
class TextAudioSpeakerCollate: | |
"""Zero-pads model inputs and targets""" | |
def __init__(self, return_ids=False): | |
self.return_ids = return_ids | |
def __call__(self, batch): | |
"""Collate's training batch from normalized text, audio and speaker identities | |
PARAMS | |
------ | |
batch: [text_normalized, spec_normalized, wav_normalized, sid] | |
""" | |
# Right zero-pad all one-hot text sequences to max input length | |
_, ids_sorted_decreasing = torch.sort( | |
torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True | |
) | |
max_ssl_len = max([x[0].size(2) for x in batch]) | |
max_ssl_len = int(2 * ((max_ssl_len // 2) + 1)) | |
max_spec_len = max([x[1].size(1) for x in batch]) | |
max_spec_len = int(2 * ((max_spec_len // 2) + 1)) | |
max_wav_len = max([x[2].size(1) for x in batch]) | |
max_text_len = max([x[3].size(0) for x in batch]) | |
ssl_lengths = torch.LongTensor(len(batch)) | |
spec_lengths = torch.LongTensor(len(batch)) | |
wav_lengths = torch.LongTensor(len(batch)) | |
text_lengths = torch.LongTensor(len(batch)) | |
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len) | |
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len) | |
ssl_padded = torch.FloatTensor(len(batch), batch[0][0].size(1), max_ssl_len) | |
text_padded = torch.LongTensor(len(batch), max_text_len) | |
spec_padded.zero_() | |
wav_padded.zero_() | |
ssl_padded.zero_() | |
text_padded.zero_() | |
for i in range(len(ids_sorted_decreasing)): | |
row = batch[ids_sorted_decreasing[i]] | |
ssl = row[0] | |
ssl_padded[i, :, : ssl.size(2)] = ssl[0, :, :] | |
ssl_lengths[i] = ssl.size(2) | |
spec = row[1] | |
spec_padded[i, :, : spec.size(1)] = spec | |
spec_lengths[i] = spec.size(1) | |
wav = row[2] | |
wav_padded[i, :, : wav.size(1)] = wav | |
wav_lengths[i] = wav.size(1) | |
text = row[3] | |
text_padded[i, : text.size(0)] = text | |
text_lengths[i] = text.size(0) | |
return ( | |
ssl_padded, | |
ssl_lengths, | |
spec_padded, | |
spec_lengths, | |
wav_padded, | |
wav_lengths, | |
text_padded, | |
text_lengths, | |
) | |
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler): | |
""" | |
Maintain similar input lengths in a batch. | |
Length groups are specified by boundaries. | |
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}. | |
It removes samples which are not included in the boundaries. | |
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded. | |
""" | |
def __init__( | |
self, | |
dataset, | |
batch_size, | |
boundaries, | |
num_replicas=None, | |
rank=None, | |
shuffle=True, | |
): | |
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) | |
self.lengths = dataset.lengths | |
# print(233333333333333,self.lengths,dir(dataset)) | |
self.batch_size = batch_size | |
self.boundaries = boundaries | |
self.buckets, self.num_samples_per_bucket = self._create_buckets() | |
self.total_size = sum(self.num_samples_per_bucket) | |
self.num_samples = self.total_size // self.num_replicas | |
def _create_buckets(self): | |
buckets = [[] for _ in range(len(self.boundaries) - 1)] | |
for i in range(len(self.lengths)): | |
length = self.lengths[i] | |
idx_bucket = self._bisect(length) | |
if idx_bucket != -1: | |
buckets[idx_bucket].append(i) | |
for i in range(len(buckets) - 1, 0, -1): | |
# for i in range(len(buckets) - 1, -1, -1): | |
if len(buckets[i]) == 0: | |
buckets.pop(i) | |
self.boundaries.pop(i + 1) | |
num_samples_per_bucket = [] | |
for i in range(len(buckets)): | |
len_bucket = len(buckets[i]) | |
total_batch_size = self.num_replicas * self.batch_size | |
rem = ( | |
total_batch_size - (len_bucket % total_batch_size) | |
) % total_batch_size | |
num_samples_per_bucket.append(len_bucket + rem) | |
return buckets, num_samples_per_bucket | |
def __iter__(self): | |
# deterministically shuffle based on epoch | |
g = torch.Generator() | |
g.manual_seed(self.epoch) | |
indices = [] | |
if self.shuffle: | |
for bucket in self.buckets: | |
indices.append(torch.randperm(len(bucket), generator=g).tolist()) | |
else: | |
for bucket in self.buckets: | |
indices.append(list(range(len(bucket)))) | |
batches = [] | |
for i in range(len(self.buckets)): | |
bucket = self.buckets[i] | |
len_bucket = len(bucket) | |
ids_bucket = indices[i] | |
num_samples_bucket = self.num_samples_per_bucket[i] | |
# add extra samples to make it evenly divisible | |
rem = num_samples_bucket - len_bucket | |
ids_bucket = ( | |
ids_bucket | |
+ ids_bucket * (rem // len_bucket) | |
+ ids_bucket[: (rem % len_bucket)] | |
) | |
# subsample | |
ids_bucket = ids_bucket[self.rank :: self.num_replicas] | |
# batching | |
for j in range(len(ids_bucket) // self.batch_size): | |
batch = [ | |
bucket[idx] | |
for idx in ids_bucket[ | |
j * self.batch_size : (j + 1) * self.batch_size | |
] | |
] | |
batches.append(batch) | |
if self.shuffle: | |
batch_ids = torch.randperm(len(batches), generator=g).tolist() | |
batches = [batches[i] for i in batch_ids] | |
self.batches = batches | |
assert len(self.batches) * self.batch_size == self.num_samples | |
return iter(self.batches) | |
def _bisect(self, x, lo=0, hi=None): | |
if hi is None: | |
hi = len(self.boundaries) - 1 | |
if hi > lo: | |
mid = (hi + lo) // 2 | |
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]: | |
return mid | |
elif x <= self.boundaries[mid]: | |
return self._bisect(x, lo, mid) | |
else: | |
return self._bisect(x, mid + 1, hi) | |
else: | |
return -1 | |
def __len__(self): | |
return self.num_samples // self.batch_size | |