Spaces:
Running
Running
Init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +2 -0
- AR/__init__.py +0 -0
- AR/data/__init__.py +0 -0
- AR/data/bucket_sampler.py +161 -0
- AR/data/data_module.py +74 -0
- AR/data/dataset.py +320 -0
- AR/models/__init__.py +0 -0
- AR/models/t2s_lightning_module.py +140 -0
- AR/models/t2s_model.py +325 -0
- AR/models/utils.py +160 -0
- AR/modules/__init__.py +0 -0
- AR/modules/activation.py +428 -0
- AR/modules/embedding.py +81 -0
- AR/modules/lr_schedulers.py +82 -0
- AR/modules/optim.py +622 -0
- AR/modules/patched_mha_with_cache.py +463 -0
- AR/modules/scaling.py +335 -0
- AR/modules/transformer.py +378 -0
- AR/text_processing/__init__.py +0 -0
- AR/text_processing/phonemizer.py +78 -0
- AR/text_processing/symbols.py +9 -0
- AR/utils/__init__.py +37 -0
- AR/utils/initialize.py +38 -0
- AR/utils/io.py +34 -0
- README.md +5 -3
- app.py +275 -0
- configs/s1.yaml +31 -0
- configs/s1big.yaml +31 -0
- configs/s1big2.yaml +31 -0
- configs/s1longer.yaml +31 -0
- configs/s1mq.yaml +77 -0
- configs/s2.json +90 -0
- configs/train.yaml +32 -0
- feature_extractor/__init__.py +6 -0
- feature_extractor/cnhubert.py +104 -0
- feature_extractor/whisper_enc.py +25 -0
- inference_webui.py +360 -0
- module/__init__.py +0 -0
- module/attentions.py +709 -0
- module/commons.py +189 -0
- module/core_vq.py +383 -0
- module/data_utils.py +379 -0
- module/losses.py +73 -0
- module/mel_processing.py +153 -0
- module/models.py +989 -0
- module/modules.py +923 -0
- module/mrte_model.py +192 -0
- module/quantize.py +119 -0
- module/transforms.py +209 -0
- my_utils.py +21 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
venv/
|
2 |
+
__pycache__/
|
AR/__init__.py
ADDED
File without changes
|
AR/data/__init__.py
ADDED
File without changes
|
AR/data/bucket_sampler.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/bucketsampler.py
|
2 |
+
import itertools
|
3 |
+
import math
|
4 |
+
import random
|
5 |
+
from random import shuffle
|
6 |
+
from typing import Iterator
|
7 |
+
from typing import Optional
|
8 |
+
from typing import TypeVar
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.distributed as dist
|
12 |
+
from torch.utils.data import Dataset
|
13 |
+
from torch.utils.data import Sampler
|
14 |
+
|
15 |
+
__all__ = [
|
16 |
+
"DistributedBucketSampler",
|
17 |
+
]
|
18 |
+
|
19 |
+
T_co = TypeVar("T_co", covariant=True)
|
20 |
+
|
21 |
+
|
22 |
+
class DistributedBucketSampler(Sampler[T_co]):
|
23 |
+
r"""
|
24 |
+
sort the dataset wrt. input length
|
25 |
+
divide samples into buckets
|
26 |
+
sort within buckets
|
27 |
+
divide buckets into batches
|
28 |
+
sort batches
|
29 |
+
"""
|
30 |
+
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
dataset: Dataset,
|
34 |
+
num_replicas: Optional[int] = None,
|
35 |
+
rank: Optional[int] = None,
|
36 |
+
shuffle: bool = True,
|
37 |
+
seed: int = 0,
|
38 |
+
drop_last: bool = False,
|
39 |
+
batch_size: int = 32,
|
40 |
+
) -> None:
|
41 |
+
if num_replicas is None:
|
42 |
+
if not dist.is_available():
|
43 |
+
raise RuntimeError("Requires distributed package to be available")
|
44 |
+
num_replicas = dist.get_world_size()
|
45 |
+
if rank is None:
|
46 |
+
if not dist.is_available():
|
47 |
+
raise RuntimeError("Requires distributed package to be available")
|
48 |
+
rank = dist.get_rank()
|
49 |
+
torch.cuda.set_device(rank)
|
50 |
+
if rank >= num_replicas or rank < 0:
|
51 |
+
raise ValueError(
|
52 |
+
"Invalid rank {}, rank should be in the interval"
|
53 |
+
" [0, {}]".format(rank, num_replicas - 1)
|
54 |
+
)
|
55 |
+
self.dataset = dataset
|
56 |
+
self.num_replicas = num_replicas
|
57 |
+
self.rank = rank
|
58 |
+
self.epoch = 0
|
59 |
+
self.drop_last = drop_last
|
60 |
+
# If the dataset length is evenly divisible by # of replicas, then there
|
61 |
+
# is no need to drop any data, since the dataset will be split equally.
|
62 |
+
if (
|
63 |
+
self.drop_last and len(self.dataset) % self.num_replicas != 0
|
64 |
+
): # type: ignore[arg-type]
|
65 |
+
# Split to nearest available length that is evenly divisible.
|
66 |
+
# This is to ensure each rank receives the same amount of data when
|
67 |
+
# using this Sampler.
|
68 |
+
self.num_samples = math.ceil(
|
69 |
+
(len(self.dataset) - self.num_replicas)
|
70 |
+
/ self.num_replicas # type: ignore[arg-type]
|
71 |
+
)
|
72 |
+
else:
|
73 |
+
self.num_samples = math.ceil(
|
74 |
+
len(self.dataset) / self.num_replicas
|
75 |
+
) # type: ignore[arg-type]
|
76 |
+
self.total_size = self.num_samples * self.num_replicas
|
77 |
+
self.shuffle = shuffle
|
78 |
+
self.seed = seed
|
79 |
+
self.batch_size = batch_size
|
80 |
+
self.id_with_length = self._get_sample_lengths()
|
81 |
+
self.id_buckets = self.make_buckets(bucket_width=2.0)
|
82 |
+
|
83 |
+
def _get_sample_lengths(self):
|
84 |
+
id_with_lengths = []
|
85 |
+
for i in range(len(self.dataset)):
|
86 |
+
id_with_lengths.append((i, self.dataset.get_sample_length(i)))
|
87 |
+
id_with_lengths.sort(key=lambda x: x[1])
|
88 |
+
return id_with_lengths
|
89 |
+
|
90 |
+
def make_buckets(self, bucket_width: float = 2.0):
|
91 |
+
buckets = []
|
92 |
+
cur = []
|
93 |
+
max_sec = bucket_width
|
94 |
+
for id, sec in self.id_with_length:
|
95 |
+
if sec < max_sec:
|
96 |
+
cur.append(id)
|
97 |
+
else:
|
98 |
+
buckets.append(cur)
|
99 |
+
cur = [id]
|
100 |
+
max_sec += bucket_width
|
101 |
+
if len(cur) > 0:
|
102 |
+
buckets.append(cur)
|
103 |
+
return buckets
|
104 |
+
|
105 |
+
def __iter__(self) -> Iterator[T_co]:
|
106 |
+
if self.shuffle:
|
107 |
+
# deterministically shuffle based on epoch and seed
|
108 |
+
g = torch.Generator()
|
109 |
+
g.manual_seed(self.seed + self.epoch)
|
110 |
+
random.seed(self.epoch + self.seed)
|
111 |
+
shuffled_bucket = []
|
112 |
+
for buc in self.id_buckets:
|
113 |
+
buc_copy = buc.copy()
|
114 |
+
shuffle(buc_copy)
|
115 |
+
shuffled_bucket.append(buc_copy)
|
116 |
+
grouped_batch_size = self.batch_size * self.num_replicas
|
117 |
+
shuffled_bucket = list(itertools.chain(*shuffled_bucket))
|
118 |
+
n_batch = int(math.ceil(len(shuffled_bucket) / grouped_batch_size))
|
119 |
+
batches = [
|
120 |
+
shuffled_bucket[b * grouped_batch_size : (b + 1) * grouped_batch_size]
|
121 |
+
for b in range(n_batch)
|
122 |
+
]
|
123 |
+
shuffle(batches)
|
124 |
+
indices = list(itertools.chain(*batches))
|
125 |
+
else:
|
126 |
+
# type: ignore[arg-type]
|
127 |
+
indices = list(range(len(self.dataset)))
|
128 |
+
|
129 |
+
if not self.drop_last:
|
130 |
+
# add extra samples to make it evenly divisible
|
131 |
+
padding_size = self.total_size - len(indices)
|
132 |
+
if padding_size <= len(indices):
|
133 |
+
indices += indices[:padding_size]
|
134 |
+
else:
|
135 |
+
indices += (indices * math.ceil(padding_size / len(indices)))[
|
136 |
+
:padding_size
|
137 |
+
]
|
138 |
+
else:
|
139 |
+
# remove tail of data to make it evenly divisible.
|
140 |
+
indices = indices[: self.total_size]
|
141 |
+
assert len(indices) == self.total_size
|
142 |
+
|
143 |
+
# subsample
|
144 |
+
indices = indices[self.rank : self.total_size : self.num_replicas]
|
145 |
+
assert len(indices) == self.num_samples
|
146 |
+
|
147 |
+
return iter(indices)
|
148 |
+
|
149 |
+
def __len__(self) -> int:
|
150 |
+
return self.num_samples
|
151 |
+
|
152 |
+
def set_epoch(self, epoch: int) -> None:
|
153 |
+
r"""
|
154 |
+
Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas
|
155 |
+
use a different random ordering for each epoch. Otherwise, the next iteration of this
|
156 |
+
sampler will yield the same ordering.
|
157 |
+
|
158 |
+
Args:
|
159 |
+
epoch (int): Epoch number.
|
160 |
+
"""
|
161 |
+
self.epoch = epoch
|
AR/data/data_module.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/data_module.py
|
2 |
+
from pytorch_lightning import LightningDataModule
|
3 |
+
from AR.data.bucket_sampler import DistributedBucketSampler
|
4 |
+
from AR.data.dataset import Text2SemanticDataset
|
5 |
+
from torch.utils.data import DataLoader
|
6 |
+
|
7 |
+
|
8 |
+
class Text2SemanticDataModule(LightningDataModule):
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
config,
|
12 |
+
train_semantic_path,
|
13 |
+
train_phoneme_path,
|
14 |
+
dev_semantic_path=None,
|
15 |
+
dev_phoneme_path=None,
|
16 |
+
):
|
17 |
+
super().__init__()
|
18 |
+
self.config = config
|
19 |
+
self.train_semantic_path = train_semantic_path
|
20 |
+
self.train_phoneme_path = train_phoneme_path
|
21 |
+
self.dev_semantic_path = dev_semantic_path
|
22 |
+
self.dev_phoneme_path = dev_phoneme_path
|
23 |
+
self.num_workers = self.config["data"]["num_workers"]
|
24 |
+
|
25 |
+
def prepare_data(self):
|
26 |
+
pass
|
27 |
+
|
28 |
+
def setup(self, stage=None, output_logs=False):
|
29 |
+
self._train_dataset = Text2SemanticDataset(
|
30 |
+
phoneme_path=self.train_phoneme_path,
|
31 |
+
semantic_path=self.train_semantic_path,
|
32 |
+
max_sec=self.config["data"]["max_sec"],
|
33 |
+
pad_val=self.config["data"]["pad_val"],
|
34 |
+
)
|
35 |
+
self._dev_dataset = self._train_dataset
|
36 |
+
# self._dev_dataset = Text2SemanticDataset(
|
37 |
+
# phoneme_path=self.dev_phoneme_path,
|
38 |
+
# semantic_path=self.dev_semantic_path,
|
39 |
+
# max_sample=self.config['data']['max_eval_sample'],
|
40 |
+
# max_sec=self.config['data']['max_sec'],
|
41 |
+
# pad_val=self.config['data']['pad_val'])
|
42 |
+
|
43 |
+
def train_dataloader(self):
|
44 |
+
batch_size = self.config["train"]["batch_size"]
|
45 |
+
sampler = DistributedBucketSampler(self._train_dataset, batch_size=batch_size)
|
46 |
+
return DataLoader(
|
47 |
+
self._train_dataset,
|
48 |
+
batch_size=batch_size,
|
49 |
+
sampler=sampler,
|
50 |
+
collate_fn=self._train_dataset.collate,
|
51 |
+
num_workers=self.num_workers,
|
52 |
+
persistent_workers=True,
|
53 |
+
prefetch_factor=16,
|
54 |
+
)
|
55 |
+
|
56 |
+
def val_dataloader(self):
|
57 |
+
return DataLoader(
|
58 |
+
self._dev_dataset,
|
59 |
+
batch_size=1,
|
60 |
+
shuffle=False,
|
61 |
+
collate_fn=self._train_dataset.collate,
|
62 |
+
num_workers=max(self.num_workers, 12),
|
63 |
+
persistent_workers=True,
|
64 |
+
prefetch_factor=16,
|
65 |
+
)
|
66 |
+
|
67 |
+
# 这个会使用到嘛?
|
68 |
+
def test_dataloader(self):
|
69 |
+
return DataLoader(
|
70 |
+
self._dev_dataset,
|
71 |
+
batch_size=1,
|
72 |
+
shuffle=False,
|
73 |
+
collate_fn=self._train_dataset.collate,
|
74 |
+
)
|
AR/data/dataset.py
ADDED
@@ -0,0 +1,320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/t2s_dataset.py
|
2 |
+
import pdb
|
3 |
+
import sys
|
4 |
+
|
5 |
+
# sys.path.append("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert")
|
6 |
+
import traceback, os
|
7 |
+
from typing import Dict
|
8 |
+
from typing import List
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import pandas as pd
|
12 |
+
import torch, json
|
13 |
+
from torch.utils.data import DataLoader
|
14 |
+
from torch.utils.data import Dataset
|
15 |
+
from transformers import AutoTokenizer
|
16 |
+
|
17 |
+
from text import cleaned_text_to_sequence
|
18 |
+
|
19 |
+
# from config import exp_dir
|
20 |
+
|
21 |
+
|
22 |
+
def batch_sequences(sequences: List[np.array], axis: int = 0, pad_value: int = 0):
|
23 |
+
seq = sequences[0]
|
24 |
+
ndim = seq.ndim
|
25 |
+
if axis < 0:
|
26 |
+
axis += ndim
|
27 |
+
dtype = seq.dtype
|
28 |
+
pad_value = dtype.type(pad_value)
|
29 |
+
seq_lengths = [seq.shape[axis] for seq in sequences]
|
30 |
+
max_length = np.max(seq_lengths)
|
31 |
+
|
32 |
+
padded_sequences = []
|
33 |
+
for seq, length in zip(sequences, seq_lengths):
|
34 |
+
padding = (
|
35 |
+
[(0, 0)] * axis + [(0, max_length - length)] + [(0, 0)] * (ndim - axis - 1)
|
36 |
+
)
|
37 |
+
padded_seq = np.pad(seq, padding, mode="constant", constant_values=pad_value)
|
38 |
+
padded_sequences.append(padded_seq)
|
39 |
+
batch = np.stack(padded_sequences)
|
40 |
+
return batch
|
41 |
+
|
42 |
+
|
43 |
+
class Text2SemanticDataset(Dataset):
|
44 |
+
"""dataset class for text tokens to semantic model training."""
|
45 |
+
|
46 |
+
def __init__(
|
47 |
+
self,
|
48 |
+
phoneme_path: str,
|
49 |
+
semantic_path: str,
|
50 |
+
max_sample: int = None,
|
51 |
+
max_sec: int = 100,
|
52 |
+
pad_val: int = 1024,
|
53 |
+
# min value of phoneme/sec
|
54 |
+
min_ps_ratio: int = 3,
|
55 |
+
# max value of phoneme/sec
|
56 |
+
max_ps_ratio: int = 25,
|
57 |
+
) -> None:
|
58 |
+
super().__init__()
|
59 |
+
|
60 |
+
self.semantic_data = pd.read_csv(
|
61 |
+
semantic_path, delimiter="\t", encoding="utf-8"
|
62 |
+
)
|
63 |
+
# get dict
|
64 |
+
self.path2 = phoneme_path # "%s/2-name2text.txt"%exp_dir#phoneme_path
|
65 |
+
self.path3 = "%s/3-bert" % (
|
66 |
+
os.path.basename(phoneme_path)
|
67 |
+
) # "%s/3-bert"%exp_dir#bert_dir
|
68 |
+
self.path6 = semantic_path # "%s/6-name2semantic.tsv"%exp_dir#semantic_path
|
69 |
+
assert os.path.exists(self.path2)
|
70 |
+
assert os.path.exists(self.path6)
|
71 |
+
self.phoneme_data = {}
|
72 |
+
with open(self.path2, "r", encoding="utf8") as f:
|
73 |
+
lines = f.read().strip("\n").split("\n")
|
74 |
+
|
75 |
+
for line in lines:
|
76 |
+
tmp = line.split("\t")
|
77 |
+
if len(tmp) != 4:
|
78 |
+
continue
|
79 |
+
self.phoneme_data[tmp[0]] = [tmp[1], tmp[2], tmp[3]]
|
80 |
+
|
81 |
+
# self.phoneme_data = np.load(phoneme_path, allow_pickle=True).item()
|
82 |
+
# pad for semantic tokens
|
83 |
+
self.PAD: int = pad_val
|
84 |
+
# self.hz = 25
|
85 |
+
# with open("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert/configs/s2.json", "r") as f:data = f.read()
|
86 |
+
# data=json.loads(data)["model"]["semantic_frame_rate"]#50hz
|
87 |
+
# self.hz=int(data[:-2])#
|
88 |
+
self.hz = int(os.environ.get("hz", "25hz")[:-2])
|
89 |
+
|
90 |
+
# max seconds of semantic token
|
91 |
+
self.max_sec = max_sec
|
92 |
+
self.min_ps_ratio = min_ps_ratio
|
93 |
+
self.max_ps_ratio = max_ps_ratio
|
94 |
+
|
95 |
+
if max_sample is not None:
|
96 |
+
self.semantic_data = self.semantic_data[:max_sample]
|
97 |
+
|
98 |
+
# {idx: (semantic, phoneme)}
|
99 |
+
# semantic list, phoneme list
|
100 |
+
self.semantic_phoneme = []
|
101 |
+
self.item_names = []
|
102 |
+
|
103 |
+
self.inited = False
|
104 |
+
|
105 |
+
if not self.inited:
|
106 |
+
# 调用初始化函数
|
107 |
+
self.init_batch()
|
108 |
+
self.inited = True
|
109 |
+
del self.semantic_data
|
110 |
+
del self.phoneme_data
|
111 |
+
# self.tokenizer = AutoTokenizer.from_pretrained("hfl/chinese-roberta-wwm-ext-large")
|
112 |
+
# self.tokenizer = AutoTokenizer.from_pretrained("/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large")
|
113 |
+
|
114 |
+
def init_batch(self):
|
115 |
+
semantic_data_len = len(self.semantic_data)
|
116 |
+
phoneme_data_len = len(self.phoneme_data.keys())
|
117 |
+
print("semantic_data_len:", semantic_data_len)
|
118 |
+
print("phoneme_data_len:", phoneme_data_len)
|
119 |
+
print(self.semantic_data)
|
120 |
+
idx = 0
|
121 |
+
num_not_in = 0
|
122 |
+
num_deleted_bigger = 0
|
123 |
+
num_deleted_ps = 0
|
124 |
+
for i in range(semantic_data_len):
|
125 |
+
# 先依次遍历
|
126 |
+
# get str
|
127 |
+
item_name = self.semantic_data.iloc[i,0]
|
128 |
+
# print(self.phoneme_data)
|
129 |
+
try:
|
130 |
+
phoneme, word2ph, text = self.phoneme_data[item_name]
|
131 |
+
except Exception:
|
132 |
+
traceback.print_exc()
|
133 |
+
# print(f"{item_name} not in self.phoneme_data !")
|
134 |
+
num_not_in += 1
|
135 |
+
continue
|
136 |
+
|
137 |
+
semantic_str = self.semantic_data.iloc[i,1]
|
138 |
+
# get token list
|
139 |
+
semantic_ids = [int(idx) for idx in semantic_str.split(" ")]
|
140 |
+
# (T), 是否需要变成 (1, T) -> 不需要,因为需要求 len
|
141 |
+
# 过滤掉太长的样本
|
142 |
+
if (
|
143 |
+
len(semantic_ids) > self.max_sec * self.hz
|
144 |
+
): #########1###根据token个数推测总时长过滤时长60s(config里)#40*25=1k
|
145 |
+
num_deleted_bigger += 1
|
146 |
+
continue
|
147 |
+
# (T, ), 这个速度不会很慢,所以可以在一开始就处理,无需在 __getitem__ 里面单个处理####
|
148 |
+
phoneme = phoneme.split(" ")
|
149 |
+
|
150 |
+
try:
|
151 |
+
phoneme_ids = cleaned_text_to_sequence(phoneme)
|
152 |
+
except:
|
153 |
+
traceback.print_exc()
|
154 |
+
# print(f"{item_name} not in self.phoneme_data !")
|
155 |
+
num_not_in += 1
|
156 |
+
continue
|
157 |
+
# if len(phoneme_ids) >400:###########2:改为恒定限制为semantic/2.5就行
|
158 |
+
if (
|
159 |
+
len(phoneme_ids) > self.max_sec * self.hz / 2.5
|
160 |
+
): ###########2:改为恒定限制为semantic/2.5就行
|
161 |
+
num_deleted_ps += 1
|
162 |
+
continue
|
163 |
+
# if len(semantic_ids) > 1000:###########3
|
164 |
+
# num_deleted_bigger += 1
|
165 |
+
# continue
|
166 |
+
|
167 |
+
ps_ratio = len(phoneme_ids) / (len(semantic_ids) / self.hz)
|
168 |
+
|
169 |
+
if (
|
170 |
+
ps_ratio > self.max_ps_ratio or ps_ratio < self.min_ps_ratio
|
171 |
+
): ##########4#3~25#每秒多少个phone
|
172 |
+
num_deleted_ps += 1
|
173 |
+
# print(item_name)
|
174 |
+
continue
|
175 |
+
|
176 |
+
self.semantic_phoneme.append((semantic_ids, phoneme_ids))
|
177 |
+
idx += 1
|
178 |
+
self.item_names.append(item_name)
|
179 |
+
|
180 |
+
min_num = 100 # 20直接不补#30补了也不存ckpt
|
181 |
+
leng = len(self.semantic_phoneme)
|
182 |
+
if leng < min_num:
|
183 |
+
tmp1 = self.semantic_phoneme
|
184 |
+
tmp2 = self.item_names
|
185 |
+
self.semantic_phoneme = []
|
186 |
+
self.item_names = []
|
187 |
+
for _ in range(max(2, int(min_num / leng))):
|
188 |
+
self.semantic_phoneme += tmp1
|
189 |
+
self.item_names += tmp2
|
190 |
+
if num_not_in > 0:
|
191 |
+
print(f"there are {num_not_in} semantic datas not in phoneme datas")
|
192 |
+
if num_deleted_bigger > 0:
|
193 |
+
print(
|
194 |
+
f"deleted {num_deleted_bigger} audios who's duration are bigger than {self.max_sec} seconds"
|
195 |
+
)
|
196 |
+
if num_deleted_ps > 0:
|
197 |
+
# 4702 for LibriTTS, LirbriTTS 是标注数据, 是否需要筛?=> 需要,有值为 100 的极端值
|
198 |
+
print(
|
199 |
+
f"deleted {num_deleted_ps} audios who's phoneme/sec are bigger than {self.max_ps_ratio} or smaller than {self.min_ps_ratio}"
|
200 |
+
)
|
201 |
+
"""
|
202 |
+
there are 31 semantic datas not in phoneme datas
|
203 |
+
deleted 34 audios who's duration are bigger than 54 seconds
|
204 |
+
deleted 3190 audios who's phoneme/sec are bigger than 25 or smaller than 3
|
205 |
+
dataset.__len__(): 366463
|
206 |
+
|
207 |
+
"""
|
208 |
+
# 345410 for LibriTTS
|
209 |
+
print("dataset.__len__():", self.__len__())
|
210 |
+
|
211 |
+
def __get_item_names__(self) -> List[str]:
|
212 |
+
return self.item_names
|
213 |
+
|
214 |
+
def __len__(self) -> int:
|
215 |
+
return len(self.semantic_phoneme)
|
216 |
+
|
217 |
+
def __getitem__(self, idx: int) -> Dict:
|
218 |
+
semantic_ids, phoneme_ids = self.semantic_phoneme[idx]
|
219 |
+
item_name = self.item_names[idx]
|
220 |
+
phoneme_ids_len = len(phoneme_ids)
|
221 |
+
# semantic tokens target
|
222 |
+
semantic_ids_len = len(semantic_ids)
|
223 |
+
|
224 |
+
flag = 0
|
225 |
+
path_bert = "%s/%s.pt" % (self.path3, item_name)
|
226 |
+
if os.path.exists(path_bert) == True:
|
227 |
+
bert_feature = torch.load(path_bert, map_location="cpu")
|
228 |
+
else:
|
229 |
+
flag = 1
|
230 |
+
if flag == 1:
|
231 |
+
# bert_feature=torch.zeros_like(phoneme_ids,dtype=torch.float32)
|
232 |
+
bert_feature = None
|
233 |
+
else:
|
234 |
+
assert bert_feature.shape[-1] == len(phoneme_ids)
|
235 |
+
return {
|
236 |
+
"idx": idx,
|
237 |
+
"phoneme_ids": phoneme_ids,
|
238 |
+
"phoneme_ids_len": phoneme_ids_len,
|
239 |
+
"semantic_ids": semantic_ids,
|
240 |
+
"semantic_ids_len": semantic_ids_len,
|
241 |
+
"bert_feature": bert_feature,
|
242 |
+
}
|
243 |
+
|
244 |
+
def get_sample_length(self, idx: int):
|
245 |
+
semantic_ids = self.semantic_phoneme[idx][0]
|
246 |
+
sec = 1.0 * len(semantic_ids) / self.hz
|
247 |
+
return sec
|
248 |
+
|
249 |
+
def collate(self, examples: List[Dict]) -> Dict:
|
250 |
+
sample_index: List[int] = []
|
251 |
+
phoneme_ids: List[torch.Tensor] = []
|
252 |
+
phoneme_ids_lens: List[int] = []
|
253 |
+
semantic_ids: List[torch.Tensor] = []
|
254 |
+
semantic_ids_lens: List[int] = []
|
255 |
+
# return
|
256 |
+
|
257 |
+
for item in examples:
|
258 |
+
sample_index.append(item["idx"])
|
259 |
+
phoneme_ids.append(np.array(item["phoneme_ids"], dtype=np.int64))
|
260 |
+
semantic_ids.append(np.array(item["semantic_ids"], dtype=np.int64))
|
261 |
+
phoneme_ids_lens.append(item["phoneme_ids_len"])
|
262 |
+
semantic_ids_lens.append(item["semantic_ids_len"])
|
263 |
+
|
264 |
+
# pad 0
|
265 |
+
phoneme_ids = batch_sequences(phoneme_ids)
|
266 |
+
semantic_ids = batch_sequences(semantic_ids, pad_value=self.PAD)
|
267 |
+
|
268 |
+
# # convert each batch to torch.tensor
|
269 |
+
phoneme_ids = torch.tensor(phoneme_ids)
|
270 |
+
semantic_ids = torch.tensor(semantic_ids)
|
271 |
+
phoneme_ids_lens = torch.tensor(phoneme_ids_lens)
|
272 |
+
semantic_ids_lens = torch.tensor(semantic_ids_lens)
|
273 |
+
bert_padded = torch.FloatTensor(len(examples), 1024, max(phoneme_ids_lens))
|
274 |
+
bert_padded.zero_()
|
275 |
+
|
276 |
+
for idx, item in enumerate(examples):
|
277 |
+
bert = item["bert_feature"]
|
278 |
+
if bert != None:
|
279 |
+
bert_padded[idx, :, : bert.shape[-1]] = bert
|
280 |
+
|
281 |
+
return {
|
282 |
+
# List[int]
|
283 |
+
"ids": sample_index,
|
284 |
+
# torch.Tensor (B, max_phoneme_length)
|
285 |
+
"phoneme_ids": phoneme_ids,
|
286 |
+
# torch.Tensor (B)
|
287 |
+
"phoneme_ids_len": phoneme_ids_lens,
|
288 |
+
# torch.Tensor (B, max_semantic_ids_length)
|
289 |
+
"semantic_ids": semantic_ids,
|
290 |
+
# torch.Tensor (B)
|
291 |
+
"semantic_ids_len": semantic_ids_lens,
|
292 |
+
# torch.Tensor (B, 1024, max_phoneme_length)
|
293 |
+
"bert_feature": bert_padded,
|
294 |
+
}
|
295 |
+
|
296 |
+
|
297 |
+
if __name__ == "__main__":
|
298 |
+
root_dir = "/data/docker/liujing04/gpt-vits/prepare/dump_mix/"
|
299 |
+
dataset = Text2SemanticDataset(
|
300 |
+
phoneme_path=root_dir + "phoneme_train.npy",
|
301 |
+
semantic_path=root_dir + "semantic_train.tsv",
|
302 |
+
)
|
303 |
+
|
304 |
+
batch_size = 12
|
305 |
+
dataloader = DataLoader(
|
306 |
+
dataset, batch_size=batch_size, collate_fn=dataset.collate, shuffle=False
|
307 |
+
)
|
308 |
+
for i, batch in enumerate(dataloader):
|
309 |
+
if i % 1000 == 0:
|
310 |
+
print(i)
|
311 |
+
# if i == 0:
|
312 |
+
# print('batch["ids"]:', batch["ids"])
|
313 |
+
# print('batch["phoneme_ids"]:', batch["phoneme_ids"],
|
314 |
+
# batch["phoneme_ids"].shape)
|
315 |
+
# print('batch["phoneme_ids_len"]:', batch["phoneme_ids_len"],
|
316 |
+
# batch["phoneme_ids_len"].shape)
|
317 |
+
# print('batch["semantic_ids"]:', batch["semantic_ids"],
|
318 |
+
# batch["semantic_ids"].shape)
|
319 |
+
# print('batch["semantic_ids_len"]:', batch["semantic_ids_len"],
|
320 |
+
# batch["semantic_ids_len"].shape)
|
AR/models/__init__.py
ADDED
File without changes
|
AR/models/t2s_lightning_module.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_lightning_module.py
|
2 |
+
import os, sys
|
3 |
+
|
4 |
+
now_dir = os.getcwd()
|
5 |
+
sys.path.append(now_dir)
|
6 |
+
from typing import Dict
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from pytorch_lightning import LightningModule
|
10 |
+
from AR.models.t2s_model import Text2SemanticDecoder
|
11 |
+
from AR.modules.lr_schedulers import WarmupCosineLRSchedule
|
12 |
+
from AR.modules.optim import ScaledAdam
|
13 |
+
|
14 |
+
|
15 |
+
class Text2SemanticLightningModule(LightningModule):
|
16 |
+
def __init__(self, config, output_dir, is_train=True):
|
17 |
+
super().__init__()
|
18 |
+
self.config = config
|
19 |
+
self.top_k = 3
|
20 |
+
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
|
21 |
+
pretrained_s1 = config.get("pretrained_s1")
|
22 |
+
if pretrained_s1 and is_train:
|
23 |
+
# print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
|
24 |
+
print(
|
25 |
+
self.load_state_dict(
|
26 |
+
torch.load(pretrained_s1, map_location="cpu")["weight"]
|
27 |
+
)
|
28 |
+
)
|
29 |
+
if is_train:
|
30 |
+
self.automatic_optimization = False
|
31 |
+
self.save_hyperparameters()
|
32 |
+
self.eval_dir = output_dir / "eval"
|
33 |
+
self.eval_dir.mkdir(parents=True, exist_ok=True)
|
34 |
+
|
35 |
+
def training_step(self, batch: Dict, batch_idx: int):
|
36 |
+
opt = self.optimizers()
|
37 |
+
scheduler = self.lr_schedulers()
|
38 |
+
loss, acc = self.model.forward(
|
39 |
+
batch["phoneme_ids"],
|
40 |
+
batch["phoneme_ids_len"],
|
41 |
+
batch["semantic_ids"],
|
42 |
+
batch["semantic_ids_len"],
|
43 |
+
batch["bert_feature"],
|
44 |
+
)
|
45 |
+
self.manual_backward(loss)
|
46 |
+
if batch_idx > 0 and batch_idx % 4 == 0:
|
47 |
+
opt.step()
|
48 |
+
opt.zero_grad()
|
49 |
+
scheduler.step()
|
50 |
+
|
51 |
+
self.log(
|
52 |
+
"total_loss",
|
53 |
+
loss,
|
54 |
+
on_step=True,
|
55 |
+
on_epoch=True,
|
56 |
+
prog_bar=True,
|
57 |
+
sync_dist=True,
|
58 |
+
)
|
59 |
+
self.log(
|
60 |
+
"lr",
|
61 |
+
scheduler.get_last_lr()[0],
|
62 |
+
on_epoch=True,
|
63 |
+
prog_bar=True,
|
64 |
+
sync_dist=True,
|
65 |
+
)
|
66 |
+
self.log(
|
67 |
+
f"top_{self.top_k}_acc",
|
68 |
+
acc,
|
69 |
+
on_step=True,
|
70 |
+
on_epoch=True,
|
71 |
+
prog_bar=True,
|
72 |
+
sync_dist=True,
|
73 |
+
)
|
74 |
+
|
75 |
+
def validation_step(self, batch: Dict, batch_idx: int):
|
76 |
+
return
|
77 |
+
|
78 |
+
# # get loss
|
79 |
+
# loss, acc = self.model.forward(
|
80 |
+
# batch['phoneme_ids'], batch['phoneme_ids_len'],
|
81 |
+
# batch['semantic_ids'], batch['semantic_ids_len'],
|
82 |
+
# batch['bert_feature']
|
83 |
+
# )
|
84 |
+
#
|
85 |
+
# self.log(
|
86 |
+
# "val_total_loss",
|
87 |
+
# loss,
|
88 |
+
# on_step=True,
|
89 |
+
# on_epoch=True,
|
90 |
+
# prog_bar=True,
|
91 |
+
# sync_dist=True)
|
92 |
+
# self.log(
|
93 |
+
# f"val_top_{self.top_k}_acc",
|
94 |
+
# acc,
|
95 |
+
# on_step=True,
|
96 |
+
# on_epoch=True,
|
97 |
+
# prog_bar=True,
|
98 |
+
# sync_dist=True)
|
99 |
+
#
|
100 |
+
# # get infer output
|
101 |
+
# semantic_len = batch['semantic_ids'].size(1)
|
102 |
+
# prompt_len = min(int(semantic_len * 0.5), 150)
|
103 |
+
# prompt = batch['semantic_ids'][:, :prompt_len]
|
104 |
+
# pred_semantic = self.model.infer(batch['phoneme_ids'],
|
105 |
+
# batch['phoneme_ids_len'], prompt,
|
106 |
+
# batch['bert_feature']
|
107 |
+
# )
|
108 |
+
# save_name = f'semantic_toks_{batch_idx}.pt'
|
109 |
+
# save_path = os.path.join(self.eval_dir, save_name)
|
110 |
+
# torch.save(pred_semantic.detach().cpu(), save_path)
|
111 |
+
|
112 |
+
def configure_optimizers(self):
|
113 |
+
model_parameters = self.model.parameters()
|
114 |
+
parameters_names = []
|
115 |
+
parameters_names.append(
|
116 |
+
[name_param_pair[0] for name_param_pair in self.model.named_parameters()]
|
117 |
+
)
|
118 |
+
lm_opt = ScaledAdam(
|
119 |
+
model_parameters,
|
120 |
+
lr=0.01,
|
121 |
+
betas=(0.9, 0.95),
|
122 |
+
clipping_scale=2.0,
|
123 |
+
parameters_names=parameters_names,
|
124 |
+
show_dominant_parameters=False,
|
125 |
+
clipping_update_period=1000,
|
126 |
+
)
|
127 |
+
|
128 |
+
return {
|
129 |
+
"optimizer": lm_opt,
|
130 |
+
"lr_scheduler": {
|
131 |
+
"scheduler": WarmupCosineLRSchedule(
|
132 |
+
lm_opt,
|
133 |
+
init_lr=self.config["optimizer"]["lr_init"],
|
134 |
+
peak_lr=self.config["optimizer"]["lr"],
|
135 |
+
end_lr=self.config["optimizer"]["lr_end"],
|
136 |
+
warmup_steps=self.config["optimizer"]["warmup_steps"],
|
137 |
+
total_steps=self.config["optimizer"]["decay_steps"],
|
138 |
+
)
|
139 |
+
},
|
140 |
+
}
|
AR/models/t2s_model.py
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_model.py
|
2 |
+
import torch
|
3 |
+
from tqdm import tqdm
|
4 |
+
|
5 |
+
from AR.models.utils import make_pad_mask
|
6 |
+
from AR.models.utils import (
|
7 |
+
topk_sampling,
|
8 |
+
sample,
|
9 |
+
logits_to_probs,
|
10 |
+
multinomial_sample_one_no_sync,
|
11 |
+
)
|
12 |
+
from AR.modules.embedding import SinePositionalEmbedding
|
13 |
+
from AR.modules.embedding import TokenEmbedding
|
14 |
+
from AR.modules.transformer import LayerNorm
|
15 |
+
from AR.modules.transformer import TransformerEncoder
|
16 |
+
from AR.modules.transformer import TransformerEncoderLayer
|
17 |
+
from torch import nn
|
18 |
+
from torch.nn import functional as F
|
19 |
+
from torchmetrics.classification import MulticlassAccuracy
|
20 |
+
|
21 |
+
default_config = {
|
22 |
+
"embedding_dim": 512,
|
23 |
+
"hidden_dim": 512,
|
24 |
+
"num_head": 8,
|
25 |
+
"num_layers": 12,
|
26 |
+
"num_codebook": 8,
|
27 |
+
"p_dropout": 0.0,
|
28 |
+
"vocab_size": 1024 + 1,
|
29 |
+
"phoneme_vocab_size": 512,
|
30 |
+
"EOS": 1024,
|
31 |
+
}
|
32 |
+
|
33 |
+
|
34 |
+
class Text2SemanticDecoder(nn.Module):
|
35 |
+
def __init__(self, config, norm_first=False, top_k=3):
|
36 |
+
super(Text2SemanticDecoder, self).__init__()
|
37 |
+
self.model_dim = config["model"]["hidden_dim"]
|
38 |
+
self.embedding_dim = config["model"]["embedding_dim"]
|
39 |
+
self.num_head = config["model"]["head"]
|
40 |
+
self.num_layers = config["model"]["n_layer"]
|
41 |
+
self.norm_first = norm_first
|
42 |
+
self.vocab_size = config["model"]["vocab_size"]
|
43 |
+
self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
|
44 |
+
self.p_dropout = config["model"]["dropout"]
|
45 |
+
self.EOS = config["model"]["EOS"]
|
46 |
+
self.norm_first = norm_first
|
47 |
+
assert self.EOS == self.vocab_size - 1
|
48 |
+
# should be same as num of kmeans bin
|
49 |
+
# assert self.EOS == 1024
|
50 |
+
self.bert_proj = nn.Linear(1024, self.embedding_dim)
|
51 |
+
self.ar_text_embedding = TokenEmbedding(
|
52 |
+
self.embedding_dim, self.phoneme_vocab_size, self.p_dropout
|
53 |
+
)
|
54 |
+
self.ar_text_position = SinePositionalEmbedding(
|
55 |
+
self.embedding_dim, dropout=0.1, scale=False, alpha=True
|
56 |
+
)
|
57 |
+
self.ar_audio_embedding = TokenEmbedding(
|
58 |
+
self.embedding_dim, self.vocab_size, self.p_dropout
|
59 |
+
)
|
60 |
+
self.ar_audio_position = SinePositionalEmbedding(
|
61 |
+
self.embedding_dim, dropout=0.1, scale=False, alpha=True
|
62 |
+
)
|
63 |
+
|
64 |
+
self.h = TransformerEncoder(
|
65 |
+
TransformerEncoderLayer(
|
66 |
+
d_model=self.model_dim,
|
67 |
+
nhead=self.num_head,
|
68 |
+
dim_feedforward=self.model_dim * 4,
|
69 |
+
dropout=0.1,
|
70 |
+
batch_first=True,
|
71 |
+
norm_first=norm_first,
|
72 |
+
),
|
73 |
+
num_layers=self.num_layers,
|
74 |
+
norm=LayerNorm(self.model_dim) if norm_first else None,
|
75 |
+
)
|
76 |
+
|
77 |
+
self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
|
78 |
+
self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
|
79 |
+
|
80 |
+
self.ar_accuracy_metric = MulticlassAccuracy(
|
81 |
+
self.vocab_size,
|
82 |
+
top_k=top_k,
|
83 |
+
average="micro",
|
84 |
+
multidim_average="global",
|
85 |
+
ignore_index=self.EOS,
|
86 |
+
)
|
87 |
+
|
88 |
+
def forward(self, x, x_lens, y, y_lens, bert_feature):
|
89 |
+
"""
|
90 |
+
x: phoneme_ids
|
91 |
+
y: semantic_ids
|
92 |
+
"""
|
93 |
+
x = self.ar_text_embedding(x)
|
94 |
+
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
95 |
+
x = self.ar_text_position(x)
|
96 |
+
x_mask = make_pad_mask(x_lens)
|
97 |
+
|
98 |
+
y_mask = make_pad_mask(y_lens)
|
99 |
+
y_mask_int = y_mask.type(torch.int64)
|
100 |
+
codes = y.type(torch.int64) * (1 - y_mask_int)
|
101 |
+
|
102 |
+
# Training
|
103 |
+
# AR Decoder
|
104 |
+
y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
|
105 |
+
x_len = x_lens.max()
|
106 |
+
y_len = y_lens.max()
|
107 |
+
y_emb = self.ar_audio_embedding(y)
|
108 |
+
y_pos = self.ar_audio_position(y_emb)
|
109 |
+
|
110 |
+
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
|
111 |
+
ar_xy_padding_mask = xy_padding_mask
|
112 |
+
|
113 |
+
x_attn_mask = F.pad(
|
114 |
+
torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
|
115 |
+
(0, y_len),
|
116 |
+
value=True,
|
117 |
+
)
|
118 |
+
y_attn_mask = F.pad(
|
119 |
+
torch.triu(
|
120 |
+
torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
|
121 |
+
diagonal=1,
|
122 |
+
),
|
123 |
+
(x_len, 0),
|
124 |
+
value=False,
|
125 |
+
)
|
126 |
+
xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
|
127 |
+
bsz, src_len = x.shape[0], x_len + y_len
|
128 |
+
_xy_padding_mask = (
|
129 |
+
ar_xy_padding_mask.view(bsz, 1, 1, src_len)
|
130 |
+
.expand(-1, self.num_head, -1, -1)
|
131 |
+
.reshape(bsz * self.num_head, 1, src_len)
|
132 |
+
)
|
133 |
+
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
|
134 |
+
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
|
135 |
+
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
|
136 |
+
xy_attn_mask = new_attn_mask
|
137 |
+
# x 和完整的 y 一次性输入模型
|
138 |
+
xy_pos = torch.concat([x, y_pos], dim=1)
|
139 |
+
xy_dec, _ = self.h(
|
140 |
+
(xy_pos, None),
|
141 |
+
mask=xy_attn_mask,
|
142 |
+
)
|
143 |
+
logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1)
|
144 |
+
# loss
|
145 |
+
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
|
146 |
+
loss = F.cross_entropy(logits, targets, reduction="sum")
|
147 |
+
acc = self.ar_accuracy_metric(logits.detach(), targets).item()
|
148 |
+
return loss, acc
|
149 |
+
|
150 |
+
# 需要看下这个函数和 forward 的区别以及没有 semantic 的时候 prompts 输入什么
|
151 |
+
def infer(
|
152 |
+
self,
|
153 |
+
x,
|
154 |
+
x_lens,
|
155 |
+
prompts,
|
156 |
+
bert_feature,
|
157 |
+
top_k: int = -100,
|
158 |
+
early_stop_num: int = -1,
|
159 |
+
temperature: float = 1.0,
|
160 |
+
):
|
161 |
+
x = self.ar_text_embedding(x)
|
162 |
+
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
163 |
+
x = self.ar_text_position(x)
|
164 |
+
|
165 |
+
# AR Decoder
|
166 |
+
y = prompts
|
167 |
+
prefix_len = y.shape[1]
|
168 |
+
x_len = x.shape[1]
|
169 |
+
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
170 |
+
stop = False
|
171 |
+
for _ in tqdm(range(1500)):
|
172 |
+
y_emb = self.ar_audio_embedding(y)
|
173 |
+
y_pos = self.ar_audio_position(y_emb)
|
174 |
+
# x 和逐渐增长的 y 一起输入给模型
|
175 |
+
xy_pos = torch.concat([x, y_pos], dim=1)
|
176 |
+
y_len = y.shape[1]
|
177 |
+
x_attn_mask_pad = F.pad(
|
178 |
+
x_attn_mask,
|
179 |
+
(0, y_len),
|
180 |
+
value=True,
|
181 |
+
)
|
182 |
+
y_attn_mask = F.pad(
|
183 |
+
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
184 |
+
(x_len, 0),
|
185 |
+
value=False,
|
186 |
+
)
|
187 |
+
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
|
188 |
+
y.device
|
189 |
+
)
|
190 |
+
|
191 |
+
xy_dec, _ = self.h(
|
192 |
+
(xy_pos, None),
|
193 |
+
mask=xy_attn_mask,
|
194 |
+
)
|
195 |
+
logits = self.ar_predict_layer(xy_dec[:, -1])
|
196 |
+
samples = topk_sampling(
|
197 |
+
logits, top_k=top_k, top_p=1.0, temperature=temperature
|
198 |
+
)
|
199 |
+
|
200 |
+
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
201 |
+
print("use early stop num:", early_stop_num)
|
202 |
+
stop = True
|
203 |
+
|
204 |
+
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
205 |
+
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
|
206 |
+
stop = True
|
207 |
+
if stop:
|
208 |
+
if prompts.shape[1] == y.shape[1]:
|
209 |
+
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
210 |
+
print("bad zero prediction")
|
211 |
+
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
212 |
+
break
|
213 |
+
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
|
214 |
+
# print(samples.shape)#[1,1]#第一个1是bs
|
215 |
+
# import os
|
216 |
+
# os._exit(2333)
|
217 |
+
y = torch.concat([y, samples], dim=1)
|
218 |
+
return y
|
219 |
+
|
220 |
+
def pad_y_eos(self, y, y_mask_int, eos_id):
|
221 |
+
targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad(
|
222 |
+
y_mask_int, (0, 1), value=1
|
223 |
+
)
|
224 |
+
# 错位
|
225 |
+
return targets[:, :-1], targets[:, 1:]
|
226 |
+
|
227 |
+
def infer_panel(
|
228 |
+
self,
|
229 |
+
x, #####全部文本token
|
230 |
+
x_lens,
|
231 |
+
prompts, ####参考音频token
|
232 |
+
bert_feature,
|
233 |
+
top_k: int = -100,
|
234 |
+
early_stop_num: int = -1,
|
235 |
+
temperature: float = 1.0,
|
236 |
+
):
|
237 |
+
x = self.ar_text_embedding(x)
|
238 |
+
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
239 |
+
x = self.ar_text_position(x)
|
240 |
+
|
241 |
+
# AR Decoder
|
242 |
+
y = prompts
|
243 |
+
prefix_len = y.shape[1]
|
244 |
+
x_len = x.shape[1]
|
245 |
+
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
246 |
+
stop = False
|
247 |
+
# print(1111111,self.num_layers)
|
248 |
+
cache = {
|
249 |
+
"all_stage": self.num_layers,
|
250 |
+
"k": [None] * self.num_layers, ###根据配置自己手写
|
251 |
+
"v": [None] * self.num_layers,
|
252 |
+
# "xy_pos":None,##y_pos位置编码每次都不一样的没法缓存,每次都要重新拼xy_pos.主要还是写法原因,其实是可以历史统一一样的,但也没啥计算量就不管了
|
253 |
+
"y_emb": None, ##只需要对最新的samples求emb,再拼历史的就行
|
254 |
+
# "logits":None,###原版就已经只对结尾求再拼接了,不用管
|
255 |
+
# "xy_dec":None,###不需要,本来只需要最后一个做logits
|
256 |
+
"first_infer": 1,
|
257 |
+
"stage": 0,
|
258 |
+
}
|
259 |
+
for idx in tqdm(range(1500)):
|
260 |
+
if cache["first_infer"] == 1:
|
261 |
+
y_emb = self.ar_audio_embedding(y)
|
262 |
+
else:
|
263 |
+
y_emb = torch.cat(
|
264 |
+
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1
|
265 |
+
)
|
266 |
+
cache["y_emb"] = y_emb
|
267 |
+
y_pos = self.ar_audio_position(y_emb)
|
268 |
+
# x 和逐渐增长的 y 一起输入给模型
|
269 |
+
if cache["first_infer"] == 1:
|
270 |
+
xy_pos = torch.concat([x, y_pos], dim=1)
|
271 |
+
else:
|
272 |
+
xy_pos = y_pos[:, -1:]
|
273 |
+
y_len = y_pos.shape[1]
|
274 |
+
###以下3个不做缓存
|
275 |
+
if cache["first_infer"] == 1:
|
276 |
+
x_attn_mask_pad = F.pad(
|
277 |
+
x_attn_mask,
|
278 |
+
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
|
279 |
+
value=True,
|
280 |
+
)
|
281 |
+
y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
|
282 |
+
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
283 |
+
(x_len, 0),
|
284 |
+
value=False,
|
285 |
+
)
|
286 |
+
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
|
287 |
+
y.device
|
288 |
+
)
|
289 |
+
else:
|
290 |
+
###最右边一列(是错的)
|
291 |
+
# xy_attn_mask=torch.ones((1, x_len+y_len), dtype=torch.bool,device=xy_pos.device)
|
292 |
+
# xy_attn_mask[:,-1]=False
|
293 |
+
###最下面一行(是对的)
|
294 |
+
xy_attn_mask = torch.zeros(
|
295 |
+
(1, x_len + y_len), dtype=torch.bool, device=xy_pos.device
|
296 |
+
)
|
297 |
+
# pdb.set_trace()
|
298 |
+
###缓存重头戏
|
299 |
+
# print(1111,xy_pos.shape,xy_attn_mask.shape,x_len,y_len)
|
300 |
+
xy_dec, _ = self.h((xy_pos, None), mask=xy_attn_mask, cache=cache)
|
301 |
+
logits = self.ar_predict_layer(
|
302 |
+
xy_dec[:, -1]
|
303 |
+
) ##不用改,如果用了cache的默认就是只有一帧,取最后一帧一样的
|
304 |
+
# samples = topk_sampling(logits, top_k=top_k, top_p=1.0, temperature=temperature)
|
305 |
+
samples = sample(
|
306 |
+
logits[0], y, top_k=top_k, top_p=1.0, repetition_penalty=1.35
|
307 |
+
)[0].unsqueeze(0)
|
308 |
+
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
309 |
+
print("use early stop num:", early_stop_num)
|
310 |
+
stop = True
|
311 |
+
|
312 |
+
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
313 |
+
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
|
314 |
+
stop = True
|
315 |
+
if stop:
|
316 |
+
if prompts.shape[1] == y.shape[1]:
|
317 |
+
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
318 |
+
print("bad zero prediction")
|
319 |
+
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
320 |
+
break
|
321 |
+
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
|
322 |
+
# print(samples.shape)#[1,1]#第一个1是bs
|
323 |
+
y = torch.concat([y, samples], dim=1)
|
324 |
+
cache["first_infer"] = 0
|
325 |
+
return y, idx
|
AR/models/utils.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/utils.py\
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
def sequence_mask(length, max_length=None):
|
7 |
+
if max_length is None:
|
8 |
+
max_length = length.max()
|
9 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
10 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
11 |
+
|
12 |
+
|
13 |
+
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
|
14 |
+
"""
|
15 |
+
Args:
|
16 |
+
lengths:
|
17 |
+
A 1-D tensor containing sentence lengths.
|
18 |
+
max_len:
|
19 |
+
The length of masks.
|
20 |
+
Returns:
|
21 |
+
Return a 2-D bool tensor, where masked positions
|
22 |
+
are filled with `True` and non-masked positions are
|
23 |
+
filled with `False`.
|
24 |
+
|
25 |
+
#>>> lengths = torch.tensor([1, 3, 2, 5])
|
26 |
+
#>>> make_pad_mask(lengths)
|
27 |
+
tensor([[False, True, True, True, True],
|
28 |
+
[False, False, False, True, True],
|
29 |
+
[False, False, True, True, True],
|
30 |
+
[False, False, False, False, False]])
|
31 |
+
"""
|
32 |
+
assert lengths.ndim == 1, lengths.ndim
|
33 |
+
max_len = max(max_len, lengths.max())
|
34 |
+
n = lengths.size(0)
|
35 |
+
seq_range = torch.arange(0, max_len, device=lengths.device)
|
36 |
+
expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)
|
37 |
+
|
38 |
+
return expaned_lengths >= lengths.unsqueeze(-1)
|
39 |
+
|
40 |
+
|
41 |
+
# https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py
|
42 |
+
def top_k_top_p_filtering(
|
43 |
+
logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1
|
44 |
+
):
|
45 |
+
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
46 |
+
Args:
|
47 |
+
logits: logits distribution shape (batch size, vocabulary size)
|
48 |
+
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
49 |
+
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
50 |
+
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
51 |
+
Make sure we keep at least min_tokens_to_keep per batch example in the output
|
52 |
+
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
53 |
+
"""
|
54 |
+
if top_k > 0:
|
55 |
+
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
|
56 |
+
# Remove all tokens with a probability less than the last token of the top-k
|
57 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
58 |
+
logits[indices_to_remove] = filter_value
|
59 |
+
|
60 |
+
if top_p < 1.0:
|
61 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
62 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
63 |
+
|
64 |
+
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
|
65 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
66 |
+
if min_tokens_to_keep > 1:
|
67 |
+
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
|
68 |
+
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
|
69 |
+
# Shift the indices to the right to keep also the first token above the threshold
|
70 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
71 |
+
sorted_indices_to_remove[..., 0] = 0
|
72 |
+
|
73 |
+
# scatter sorted tensors to original indexing
|
74 |
+
indices_to_remove = sorted_indices_to_remove.scatter(
|
75 |
+
1, sorted_indices, sorted_indices_to_remove
|
76 |
+
)
|
77 |
+
logits[indices_to_remove] = filter_value
|
78 |
+
return logits
|
79 |
+
|
80 |
+
|
81 |
+
def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0):
|
82 |
+
# temperature: (`optional`) float
|
83 |
+
# The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
|
84 |
+
# top_k: (`optional`) int
|
85 |
+
# The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
|
86 |
+
# top_p: (`optional`) float
|
87 |
+
# The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.
|
88 |
+
|
89 |
+
# Temperature (higher temperature => more likely to sample low probability tokens)
|
90 |
+
if temperature != 1.0:
|
91 |
+
logits = logits / temperature
|
92 |
+
# Top-p/top-k filtering
|
93 |
+
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
|
94 |
+
# Sample
|
95 |
+
token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
|
96 |
+
return token
|
97 |
+
|
98 |
+
|
99 |
+
from typing import Optional, Tuple
|
100 |
+
|
101 |
+
|
102 |
+
def multinomial_sample_one_no_sync(
|
103 |
+
probs_sort,
|
104 |
+
): # Does multinomial sampling without a cuda synchronization
|
105 |
+
q = torch.empty_like(probs_sort).exponential_(1)
|
106 |
+
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
|
107 |
+
|
108 |
+
|
109 |
+
def logits_to_probs(
|
110 |
+
logits,
|
111 |
+
previous_tokens: Optional[torch.Tensor] = None,
|
112 |
+
temperature: float = 1.0,
|
113 |
+
top_k: Optional[int] = None,
|
114 |
+
top_p: Optional[int] = None,
|
115 |
+
repetition_penalty: float = 1.0,
|
116 |
+
):
|
117 |
+
previous_tokens = previous_tokens.squeeze()
|
118 |
+
# print(logits.shape,previous_tokens.shape)
|
119 |
+
# pdb.set_trace()
|
120 |
+
if previous_tokens is not None and repetition_penalty != 1.0:
|
121 |
+
previous_tokens = previous_tokens.long()
|
122 |
+
score = torch.gather(logits, dim=0, index=previous_tokens)
|
123 |
+
score = torch.where(
|
124 |
+
score < 0, score * repetition_penalty, score / repetition_penalty
|
125 |
+
)
|
126 |
+
logits.scatter_(dim=0, index=previous_tokens, src=score)
|
127 |
+
|
128 |
+
if top_p is not None and top_p < 1.0:
|
129 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
130 |
+
cum_probs = torch.cumsum(
|
131 |
+
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
|
132 |
+
)
|
133 |
+
sorted_indices_to_remove = cum_probs > top_p
|
134 |
+
sorted_indices_to_remove[0] = False # keep at least one option
|
135 |
+
indices_to_remove = sorted_indices_to_remove.scatter(
|
136 |
+
dim=0, index=sorted_indices, src=sorted_indices_to_remove
|
137 |
+
)
|
138 |
+
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
139 |
+
|
140 |
+
logits = logits / max(temperature, 1e-5)
|
141 |
+
|
142 |
+
if top_k is not None:
|
143 |
+
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
144 |
+
pivot = v.select(-1, -1).unsqueeze(-1)
|
145 |
+
logits = torch.where(logits < pivot, -float("Inf"), logits)
|
146 |
+
|
147 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
148 |
+
return probs
|
149 |
+
|
150 |
+
|
151 |
+
def sample(
|
152 |
+
logits,
|
153 |
+
previous_tokens: Optional[torch.Tensor] = None,
|
154 |
+
**sampling_kwargs,
|
155 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
156 |
+
probs = logits_to_probs(
|
157 |
+
logits=logits, previous_tokens=previous_tokens, **sampling_kwargs
|
158 |
+
)
|
159 |
+
idx_next = multinomial_sample_one_no_sync(probs)
|
160 |
+
return idx_next, probs
|
AR/modules/__init__.py
ADDED
File without changes
|
AR/modules/activation.py
ADDED
@@ -0,0 +1,428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/activation.py
|
2 |
+
from typing import Optional
|
3 |
+
from typing import Tuple
|
4 |
+
import torch
|
5 |
+
from torch import Tensor
|
6 |
+
from torch.nn import Linear
|
7 |
+
from torch.nn import Module
|
8 |
+
from torch.nn.init import constant_
|
9 |
+
from torch.nn.init import xavier_normal_
|
10 |
+
from torch.nn.init import xavier_uniform_
|
11 |
+
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
|
12 |
+
from torch.nn.parameter import Parameter
|
13 |
+
|
14 |
+
from torch.nn import functional as F
|
15 |
+
from AR.modules.patched_mha_with_cache import multi_head_attention_forward_patched
|
16 |
+
|
17 |
+
F.multi_head_attention_forward = multi_head_attention_forward_patched
|
18 |
+
|
19 |
+
|
20 |
+
class MultiheadAttention(Module):
|
21 |
+
r"""Allows the model to jointly attend to information
|
22 |
+
from different representation subspaces as described in the paper:
|
23 |
+
`Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
|
24 |
+
|
25 |
+
Multi-Head Attention is defined as:
|
26 |
+
|
27 |
+
.. math::
|
28 |
+
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
|
29 |
+
|
30 |
+
where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
|
31 |
+
|
32 |
+
``forward()`` will use a special optimized implementation if all of the following
|
33 |
+
conditions are met:
|
34 |
+
|
35 |
+
- self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor. This
|
36 |
+
restriction will be loosened in the future.)
|
37 |
+
- Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad``
|
38 |
+
- training is disabled (using ``.eval()``)
|
39 |
+
- dropout is 0
|
40 |
+
- ``add_bias_kv`` is ``False``
|
41 |
+
- ``add_zero_attn`` is ``False``
|
42 |
+
- ``batch_first`` is ``True`` and the input is batched
|
43 |
+
- ``kdim`` and ``vdim`` are equal to ``embed_dim``
|
44 |
+
- at most one of ``key_padding_mask`` or ``attn_mask`` is passed
|
45 |
+
- if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask``
|
46 |
+
nor ``attn_mask`` is passed
|
47 |
+
|
48 |
+
If the optimized implementation is in use, a
|
49 |
+
`NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for
|
50 |
+
``query``/``key``/``value`` to represent padding more efficiently than using a
|
51 |
+
padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_
|
52 |
+
will be returned, and an additional speedup proportional to the fraction of the input
|
53 |
+
that is padding can be expected.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
embed_dim: Total dimension of the model.
|
57 |
+
num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
|
58 |
+
across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
|
59 |
+
dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
|
60 |
+
bias: If specified, adds bias to input / output projection layers. Default: ``True``.
|
61 |
+
add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
|
62 |
+
add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
|
63 |
+
Default: ``False``.
|
64 |
+
kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
|
65 |
+
vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
|
66 |
+
batch_first: If ``True``, then the input and output tensors are provided
|
67 |
+
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
|
68 |
+
|
69 |
+
Examples::
|
70 |
+
|
71 |
+
>>> # xdoctest: +SKIP
|
72 |
+
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
|
73 |
+
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
|
74 |
+
|
75 |
+
"""
|
76 |
+
__constants__ = ["batch_first"]
|
77 |
+
bias_k: Optional[torch.Tensor]
|
78 |
+
bias_v: Optional[torch.Tensor]
|
79 |
+
|
80 |
+
def __init__(
|
81 |
+
self,
|
82 |
+
embed_dim,
|
83 |
+
num_heads,
|
84 |
+
dropout=0.0,
|
85 |
+
bias=True,
|
86 |
+
add_bias_kv=False,
|
87 |
+
add_zero_attn=False,
|
88 |
+
kdim=None,
|
89 |
+
vdim=None,
|
90 |
+
batch_first=False,
|
91 |
+
linear1_cls=Linear,
|
92 |
+
linear2_cls=Linear,
|
93 |
+
device=None,
|
94 |
+
dtype=None,
|
95 |
+
) -> None:
|
96 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
97 |
+
super(MultiheadAttention, self).__init__()
|
98 |
+
self.embed_dim = embed_dim
|
99 |
+
self.kdim = kdim if kdim is not None else embed_dim
|
100 |
+
self.vdim = vdim if vdim is not None else embed_dim
|
101 |
+
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
102 |
+
|
103 |
+
self.num_heads = num_heads
|
104 |
+
self.dropout = dropout
|
105 |
+
self.batch_first = batch_first
|
106 |
+
self.head_dim = embed_dim // num_heads
|
107 |
+
assert (
|
108 |
+
self.head_dim * num_heads == self.embed_dim
|
109 |
+
), "embed_dim must be divisible by num_heads"
|
110 |
+
|
111 |
+
if add_bias_kv:
|
112 |
+
self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
113 |
+
self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
114 |
+
else:
|
115 |
+
self.bias_k = self.bias_v = None
|
116 |
+
|
117 |
+
if linear1_cls == Linear:
|
118 |
+
if not self._qkv_same_embed_dim:
|
119 |
+
self.q_proj_weight = Parameter(
|
120 |
+
torch.empty((embed_dim, embed_dim), **factory_kwargs)
|
121 |
+
)
|
122 |
+
self.k_proj_weight = Parameter(
|
123 |
+
torch.empty((embed_dim, self.kdim), **factory_kwargs)
|
124 |
+
)
|
125 |
+
self.v_proj_weight = Parameter(
|
126 |
+
torch.empty((embed_dim, self.vdim), **factory_kwargs)
|
127 |
+
)
|
128 |
+
self.register_parameter("in_proj_weight", None)
|
129 |
+
else:
|
130 |
+
self.in_proj_weight = Parameter(
|
131 |
+
torch.empty((3 * embed_dim, embed_dim), **factory_kwargs)
|
132 |
+
)
|
133 |
+
self.register_parameter("q_proj_weight", None)
|
134 |
+
self.register_parameter("k_proj_weight", None)
|
135 |
+
self.register_parameter("v_proj_weight", None)
|
136 |
+
|
137 |
+
if bias:
|
138 |
+
self.in_proj_bias = Parameter(
|
139 |
+
torch.empty(3 * embed_dim, **factory_kwargs)
|
140 |
+
)
|
141 |
+
else:
|
142 |
+
self.register_parameter("in_proj_bias", None)
|
143 |
+
self.out_proj = NonDynamicallyQuantizableLinear(
|
144 |
+
embed_dim, embed_dim, bias=bias, **factory_kwargs
|
145 |
+
)
|
146 |
+
|
147 |
+
self._reset_parameters()
|
148 |
+
else:
|
149 |
+
if not self._qkv_same_embed_dim:
|
150 |
+
raise NotImplementedError
|
151 |
+
else:
|
152 |
+
self.in_proj_linear = linear1_cls(
|
153 |
+
embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs
|
154 |
+
)
|
155 |
+
self.in_proj_weight = self.in_proj_linear.weight
|
156 |
+
|
157 |
+
self.register_parameter("q_proj_weight", None)
|
158 |
+
self.register_parameter("k_proj_weight", None)
|
159 |
+
self.register_parameter("v_proj_weight", None)
|
160 |
+
|
161 |
+
if bias:
|
162 |
+
self.in_proj_bias = self.in_proj_linear.bias
|
163 |
+
else:
|
164 |
+
self.register_parameter("in_proj_bias", None)
|
165 |
+
|
166 |
+
self.out_proj = linear2_cls(
|
167 |
+
embed_dim, embed_dim, bias=bias, **factory_kwargs
|
168 |
+
)
|
169 |
+
|
170 |
+
if self.bias_k is not None:
|
171 |
+
xavier_normal_(self.bias_k)
|
172 |
+
if self.bias_v is not None:
|
173 |
+
xavier_normal_(self.bias_v)
|
174 |
+
|
175 |
+
self.add_zero_attn = add_zero_attn
|
176 |
+
|
177 |
+
def _reset_parameters(self):
|
178 |
+
if self._qkv_same_embed_dim:
|
179 |
+
xavier_uniform_(self.in_proj_weight)
|
180 |
+
else:
|
181 |
+
xavier_uniform_(self.q_proj_weight)
|
182 |
+
xavier_uniform_(self.k_proj_weight)
|
183 |
+
xavier_uniform_(self.v_proj_weight)
|
184 |
+
|
185 |
+
if self.in_proj_bias is not None:
|
186 |
+
constant_(self.in_proj_bias, 0.0)
|
187 |
+
constant_(self.out_proj.bias, 0.0)
|
188 |
+
|
189 |
+
if self.bias_k is not None:
|
190 |
+
xavier_normal_(self.bias_k)
|
191 |
+
if self.bias_v is not None:
|
192 |
+
xavier_normal_(self.bias_v)
|
193 |
+
|
194 |
+
def __setstate__(self, state):
|
195 |
+
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
|
196 |
+
if "_qkv_same_embed_dim" not in state:
|
197 |
+
state["_qkv_same_embed_dim"] = True
|
198 |
+
|
199 |
+
super(MultiheadAttention, self).__setstate__(state)
|
200 |
+
|
201 |
+
def forward(
|
202 |
+
self,
|
203 |
+
query: Tensor,
|
204 |
+
key: Tensor,
|
205 |
+
value: Tensor,
|
206 |
+
key_padding_mask: Optional[Tensor] = None,
|
207 |
+
need_weights: bool = True,
|
208 |
+
attn_mask: Optional[Tensor] = None,
|
209 |
+
average_attn_weights: bool = True,
|
210 |
+
cache=None,
|
211 |
+
) -> Tuple[Tensor, Optional[Tensor]]:
|
212 |
+
r"""
|
213 |
+
Args:
|
214 |
+
query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False``
|
215 |
+
or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length,
|
216 |
+
:math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``.
|
217 |
+
Queries are compared against key-value pairs to produce the output.
|
218 |
+
See "Attention Is All You Need" for more details.
|
219 |
+
key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False``
|
220 |
+
or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length,
|
221 |
+
:math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``.
|
222 |
+
See "Attention Is All You Need" for more details.
|
223 |
+
value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when
|
224 |
+
``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source
|
225 |
+
sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``.
|
226 |
+
See "Attention Is All You Need" for more details.
|
227 |
+
key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
|
228 |
+
to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`.
|
229 |
+
Binary and byte masks are supported.
|
230 |
+
For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
|
231 |
+
the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value.
|
232 |
+
need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
|
233 |
+
Default: ``True``.
|
234 |
+
attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
|
235 |
+
:math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
|
236 |
+
:math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
|
237 |
+
broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
|
238 |
+
Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the
|
239 |
+
corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the
|
240 |
+
corresponding position is not allowed to attend. For a float mask, the mask values will be added to
|
241 |
+
the attention weight.
|
242 |
+
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across
|
243 |
+
heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an
|
244 |
+
effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads)
|
245 |
+
|
246 |
+
Outputs:
|
247 |
+
- **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched,
|
248 |
+
:math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``,
|
249 |
+
where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the
|
250 |
+
embedding dimension ``embed_dim``.
|
251 |
+
- **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``,
|
252 |
+
returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
|
253 |
+
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
|
254 |
+
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
|
255 |
+
head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`.
|
256 |
+
|
257 |
+
.. note::
|
258 |
+
`batch_first` argument is ignored for unbatched inputs.
|
259 |
+
"""
|
260 |
+
is_batched = query.dim() == 3
|
261 |
+
if key_padding_mask is not None:
|
262 |
+
_kpm_dtype = key_padding_mask.dtype
|
263 |
+
if _kpm_dtype != torch.bool and not torch.is_floating_point(
|
264 |
+
key_padding_mask
|
265 |
+
):
|
266 |
+
raise AssertionError(
|
267 |
+
"only bool and floating types of key_padding_mask are supported"
|
268 |
+
)
|
269 |
+
why_not_fast_path = ""
|
270 |
+
if not is_batched:
|
271 |
+
why_not_fast_path = (
|
272 |
+
f"input not batched; expected query.dim() of 3 but got {query.dim()}"
|
273 |
+
)
|
274 |
+
elif query is not key or key is not value:
|
275 |
+
# When lifting this restriction, don't forget to either
|
276 |
+
# enforce that the dtypes all match or test cases where
|
277 |
+
# they don't!
|
278 |
+
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
|
279 |
+
elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
|
280 |
+
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
|
281 |
+
elif (
|
282 |
+
self.in_proj_weight is not None and query.dtype != self.in_proj_weight.dtype
|
283 |
+
):
|
284 |
+
# this case will fail anyway, but at least they'll get a useful error message.
|
285 |
+
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
|
286 |
+
elif self.training:
|
287 |
+
why_not_fast_path = "training is enabled"
|
288 |
+
elif not self.batch_first:
|
289 |
+
why_not_fast_path = "batch_first was not True"
|
290 |
+
elif self.bias_k is not None:
|
291 |
+
why_not_fast_path = "self.bias_k was not None"
|
292 |
+
elif self.bias_v is not None:
|
293 |
+
why_not_fast_path = "self.bias_v was not None"
|
294 |
+
elif self.dropout:
|
295 |
+
why_not_fast_path = f"dropout was {self.dropout}, required zero"
|
296 |
+
elif self.add_zero_attn:
|
297 |
+
why_not_fast_path = "add_zero_attn was enabled"
|
298 |
+
elif not self._qkv_same_embed_dim:
|
299 |
+
why_not_fast_path = "_qkv_same_embed_dim was not True"
|
300 |
+
elif attn_mask is not None:
|
301 |
+
why_not_fast_path = "attn_mask was not None"
|
302 |
+
elif query.is_nested and key_padding_mask is not None:
|
303 |
+
why_not_fast_path = (
|
304 |
+
"key_padding_mask is not supported with NestedTensor input"
|
305 |
+
)
|
306 |
+
elif self.num_heads % 2 == 1:
|
307 |
+
why_not_fast_path = "num_heads is odd"
|
308 |
+
elif torch.is_autocast_enabled():
|
309 |
+
why_not_fast_path = "autocast is enabled"
|
310 |
+
|
311 |
+
if not why_not_fast_path:
|
312 |
+
tensor_args = (
|
313 |
+
query,
|
314 |
+
key,
|
315 |
+
value,
|
316 |
+
self.in_proj_weight,
|
317 |
+
self.in_proj_bias,
|
318 |
+
self.out_proj.weight,
|
319 |
+
self.out_proj.bias,
|
320 |
+
)
|
321 |
+
# We have to use list comprehensions below because TorchScript does not support
|
322 |
+
# generator expressions.
|
323 |
+
if torch.overrides.has_torch_function(tensor_args):
|
324 |
+
why_not_fast_path = "some Tensor argument has_torch_function"
|
325 |
+
elif not all(
|
326 |
+
[
|
327 |
+
(x is None or x.is_cuda or "cpu" in str(x.device))
|
328 |
+
for x in tensor_args
|
329 |
+
]
|
330 |
+
):
|
331 |
+
why_not_fast_path = "some Tensor argument is neither CUDA nor CPU"
|
332 |
+
elif torch.is_grad_enabled() and any(
|
333 |
+
[x is not None and x.requires_grad for x in tensor_args]
|
334 |
+
):
|
335 |
+
why_not_fast_path = (
|
336 |
+
"grad is enabled and at least one of query or the "
|
337 |
+
"input/output projection weights or biases requires_grad"
|
338 |
+
)
|
339 |
+
if not why_not_fast_path:
|
340 |
+
return torch._native_multi_head_attention(
|
341 |
+
query,
|
342 |
+
key,
|
343 |
+
value,
|
344 |
+
self.embed_dim,
|
345 |
+
self.num_heads,
|
346 |
+
self.in_proj_weight,
|
347 |
+
self.in_proj_bias,
|
348 |
+
self.out_proj.weight,
|
349 |
+
self.out_proj.bias,
|
350 |
+
key_padding_mask if key_padding_mask is not None else attn_mask,
|
351 |
+
need_weights,
|
352 |
+
average_attn_weights,
|
353 |
+
1
|
354 |
+
if key_padding_mask is not None
|
355 |
+
else 0
|
356 |
+
if attn_mask is not None
|
357 |
+
else None,
|
358 |
+
)
|
359 |
+
|
360 |
+
any_nested = query.is_nested or key.is_nested or value.is_nested
|
361 |
+
assert not any_nested, (
|
362 |
+
"MultiheadAttention does not support NestedTensor outside of its fast path. "
|
363 |
+
+ f"The fast path was not hit because {why_not_fast_path}"
|
364 |
+
)
|
365 |
+
|
366 |
+
if self.batch_first and is_batched:
|
367 |
+
# make sure that the transpose op does not affect the "is" property
|
368 |
+
if key is value:
|
369 |
+
if query is key:
|
370 |
+
query = key = value = query.transpose(1, 0)
|
371 |
+
else:
|
372 |
+
query, key = [x.transpose(1, 0) for x in (query, key)]
|
373 |
+
value = key
|
374 |
+
else:
|
375 |
+
query, key, value = [x.transpose(1, 0) for x in (query, key, value)]
|
376 |
+
|
377 |
+
if not self._qkv_same_embed_dim:
|
378 |
+
attn_output, attn_output_weights = F.multi_head_attention_forward(
|
379 |
+
query,
|
380 |
+
key,
|
381 |
+
value,
|
382 |
+
self.embed_dim,
|
383 |
+
self.num_heads,
|
384 |
+
self.in_proj_weight,
|
385 |
+
self.in_proj_bias,
|
386 |
+
self.bias_k,
|
387 |
+
self.bias_v,
|
388 |
+
self.add_zero_attn,
|
389 |
+
self.dropout,
|
390 |
+
self.out_proj.weight,
|
391 |
+
self.out_proj.bias,
|
392 |
+
training=self.training,
|
393 |
+
key_padding_mask=key_padding_mask,
|
394 |
+
need_weights=need_weights,
|
395 |
+
attn_mask=attn_mask,
|
396 |
+
use_separate_proj_weight=True,
|
397 |
+
q_proj_weight=self.q_proj_weight,
|
398 |
+
k_proj_weight=self.k_proj_weight,
|
399 |
+
v_proj_weight=self.v_proj_weight,
|
400 |
+
average_attn_weights=average_attn_weights,
|
401 |
+
cache=cache,
|
402 |
+
)
|
403 |
+
else:
|
404 |
+
attn_output, attn_output_weights = F.multi_head_attention_forward(
|
405 |
+
query,
|
406 |
+
key,
|
407 |
+
value,
|
408 |
+
self.embed_dim,
|
409 |
+
self.num_heads,
|
410 |
+
self.in_proj_weight,
|
411 |
+
self.in_proj_bias,
|
412 |
+
self.bias_k,
|
413 |
+
self.bias_v,
|
414 |
+
self.add_zero_attn,
|
415 |
+
self.dropout,
|
416 |
+
self.out_proj.weight,
|
417 |
+
self.out_proj.bias,
|
418 |
+
training=self.training,
|
419 |
+
key_padding_mask=key_padding_mask,
|
420 |
+
need_weights=need_weights,
|
421 |
+
attn_mask=attn_mask,
|
422 |
+
average_attn_weights=average_attn_weights,
|
423 |
+
cache=cache,
|
424 |
+
)
|
425 |
+
if self.batch_first and is_batched:
|
426 |
+
return attn_output.transpose(1, 0), attn_output_weights
|
427 |
+
else:
|
428 |
+
return attn_output, attn_output_weights
|
AR/modules/embedding.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
|
7 |
+
|
8 |
+
class TokenEmbedding(nn.Module):
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
embedding_dim: int,
|
12 |
+
vocab_size: int,
|
13 |
+
dropout: float = 0.0,
|
14 |
+
):
|
15 |
+
super().__init__()
|
16 |
+
|
17 |
+
self.vocab_size = vocab_size
|
18 |
+
self.embedding_dim = embedding_dim
|
19 |
+
|
20 |
+
self.dropout = torch.nn.Dropout(p=dropout)
|
21 |
+
self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim)
|
22 |
+
|
23 |
+
@property
|
24 |
+
def weight(self) -> torch.Tensor:
|
25 |
+
return self.word_embeddings.weight
|
26 |
+
|
27 |
+
def embedding(self, index: int) -> torch.Tensor:
|
28 |
+
return self.word_embeddings.weight[index : index + 1]
|
29 |
+
|
30 |
+
def forward(self, x: torch.Tensor):
|
31 |
+
x = self.word_embeddings(x)
|
32 |
+
x = self.dropout(x)
|
33 |
+
return x
|
34 |
+
|
35 |
+
|
36 |
+
class SinePositionalEmbedding(nn.Module):
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
embedding_dim: int,
|
40 |
+
dropout: float = 0.0,
|
41 |
+
scale: bool = False,
|
42 |
+
alpha: bool = False,
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
self.embedding_dim = embedding_dim
|
46 |
+
self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
|
47 |
+
self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
|
48 |
+
self.dropout = torch.nn.Dropout(p=dropout)
|
49 |
+
|
50 |
+
self.reverse = False
|
51 |
+
self.pe = None
|
52 |
+
self.extend_pe(torch.tensor(0.0).expand(1, 4000))
|
53 |
+
|
54 |
+
def extend_pe(self, x):
|
55 |
+
"""Reset the positional encodings."""
|
56 |
+
if self.pe is not None:
|
57 |
+
if self.pe.size(1) >= x.size(1):
|
58 |
+
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
59 |
+
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
60 |
+
return
|
61 |
+
pe = torch.zeros(x.size(1), self.embedding_dim)
|
62 |
+
if self.reverse:
|
63 |
+
position = torch.arange(
|
64 |
+
x.size(1) - 1, -1, -1.0, dtype=torch.float32
|
65 |
+
).unsqueeze(1)
|
66 |
+
else:
|
67 |
+
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
68 |
+
div_term = torch.exp(
|
69 |
+
torch.arange(0, self.embedding_dim, 2, dtype=torch.float32)
|
70 |
+
* -(math.log(10000.0) / self.embedding_dim)
|
71 |
+
)
|
72 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
73 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
74 |
+
pe = pe.unsqueeze(0)
|
75 |
+
self.pe = pe.to(device=x.device, dtype=x.dtype).detach()
|
76 |
+
|
77 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
78 |
+
self.extend_pe(x)
|
79 |
+
output = x.unsqueeze(-1) if x.ndim == 2 else x
|
80 |
+
output = output * self.x_scale + self.alpha * self.pe[:, : x.size(1)]
|
81 |
+
return self.dropout(output)
|
AR/modules/lr_schedulers.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/lr_schedulers.py
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from matplotlib import pyplot as plt
|
6 |
+
from torch import nn
|
7 |
+
from torch.optim import Adam
|
8 |
+
|
9 |
+
|
10 |
+
class WarmupCosineLRSchedule(torch.optim.lr_scheduler._LRScheduler):
|
11 |
+
"""
|
12 |
+
Implements Warmup learning rate schedule until 'warmup_steps', going from 'init_lr' to 'peak_lr' for multiple optimizers.
|
13 |
+
"""
|
14 |
+
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
optimizer,
|
18 |
+
init_lr,
|
19 |
+
peak_lr,
|
20 |
+
end_lr,
|
21 |
+
warmup_steps=10000,
|
22 |
+
total_steps=400000,
|
23 |
+
current_step=0,
|
24 |
+
):
|
25 |
+
self.init_lr = init_lr
|
26 |
+
self.peak_lr = peak_lr
|
27 |
+
self.end_lr = end_lr
|
28 |
+
self.optimizer = optimizer
|
29 |
+
self._warmup_rate = (peak_lr - init_lr) / warmup_steps
|
30 |
+
self._decay_rate = (end_lr - peak_lr) / (total_steps - warmup_steps)
|
31 |
+
self._current_step = current_step
|
32 |
+
self.lr = init_lr
|
33 |
+
self.warmup_steps = warmup_steps
|
34 |
+
self.total_steps = total_steps
|
35 |
+
self._last_lr = [self.lr]
|
36 |
+
|
37 |
+
def set_lr(self, lr):
|
38 |
+
self._last_lr = [g["lr"] for g in self.optimizer.param_groups]
|
39 |
+
for g in self.optimizer.param_groups:
|
40 |
+
# g['lr'] = lr
|
41 |
+
g["lr"] = self.end_lr ###锁定用线性
|
42 |
+
|
43 |
+
def step(self):
|
44 |
+
if self._current_step < self.warmup_steps:
|
45 |
+
lr = self.init_lr + self._warmup_rate * self._current_step
|
46 |
+
|
47 |
+
elif self._current_step > self.total_steps:
|
48 |
+
lr = self.end_lr
|
49 |
+
|
50 |
+
else:
|
51 |
+
decay_ratio = (self._current_step - self.warmup_steps) / (
|
52 |
+
self.total_steps - self.warmup_steps
|
53 |
+
)
|
54 |
+
if decay_ratio < 0.0 or decay_ratio > 1.0:
|
55 |
+
raise RuntimeError(
|
56 |
+
"Decay ratio must be in [0.0, 1.0]. Fix LR scheduler settings."
|
57 |
+
)
|
58 |
+
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
59 |
+
lr = self.end_lr + coeff * (self.peak_lr - self.end_lr)
|
60 |
+
|
61 |
+
self.lr = lr = self.end_lr = 0.002 ###锁定用线性###不听话,直接锁定!
|
62 |
+
self.set_lr(lr)
|
63 |
+
self.lr = lr
|
64 |
+
self._current_step += 1
|
65 |
+
return self.lr
|
66 |
+
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
m = nn.Linear(10, 10)
|
70 |
+
opt = Adam(m.parameters(), lr=1e-4)
|
71 |
+
s = WarmupCosineLRSchedule(
|
72 |
+
opt, 1e-6, 2e-4, 1e-6, warmup_steps=2000, total_steps=20000, current_step=0
|
73 |
+
)
|
74 |
+
lrs = []
|
75 |
+
for i in range(25000):
|
76 |
+
s.step()
|
77 |
+
lrs.append(s.lr)
|
78 |
+
print(s.lr)
|
79 |
+
|
80 |
+
plt.plot(lrs)
|
81 |
+
plt.plot(range(0, 25000), lrs)
|
82 |
+
plt.show()
|
AR/modules/optim.py
ADDED
@@ -0,0 +1,622 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
|
2 |
+
#
|
3 |
+
# See ../LICENSE for clarification regarding multiple authors
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
import contextlib
|
17 |
+
import logging
|
18 |
+
from collections import defaultdict
|
19 |
+
from typing import List
|
20 |
+
from typing import Tuple
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from torch import Tensor
|
24 |
+
from torch.optim import Optimizer
|
25 |
+
|
26 |
+
|
27 |
+
class BatchedOptimizer(Optimizer):
|
28 |
+
"""
|
29 |
+
This class adds to class Optimizer the capability to optimize parameters in batches:
|
30 |
+
it will stack the parameters and their grads for you so the optimizer can work
|
31 |
+
on tensors with an extra leading dimension. This is intended for speed with GPUs,
|
32 |
+
as it reduces the number of kernels launched in the optimizer.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
params:
|
36 |
+
"""
|
37 |
+
|
38 |
+
def __init__(self, params, defaults):
|
39 |
+
super(BatchedOptimizer, self).__init__(params, defaults)
|
40 |
+
|
41 |
+
@contextlib.contextmanager
|
42 |
+
def batched_params(self, param_group, group_params_names):
|
43 |
+
"""
|
44 |
+
This function returns (technically, yields) a list of
|
45 |
+
of tuples (p, state), where
|
46 |
+
p is a `fake` parameter that is stacked (over axis 0) from real parameters
|
47 |
+
that share the same shape, and its gradient is also stacked;
|
48 |
+
`state` is the state corresponding to this batch of parameters
|
49 |
+
(it will be physically located in the "state" for one of the real
|
50 |
+
parameters, the last one that has any particular shape and dtype).
|
51 |
+
|
52 |
+
This function is decorated as a context manager so that it can
|
53 |
+
write parameters back to their "real" locations.
|
54 |
+
|
55 |
+
The idea is, instead of doing:
|
56 |
+
<code>
|
57 |
+
for p in group["params"]:
|
58 |
+
state = self.state[p]
|
59 |
+
...
|
60 |
+
</code>
|
61 |
+
you can do:
|
62 |
+
<code>
|
63 |
+
with self.batched_params(group["params"]) as batches:
|
64 |
+
for p, state, p_names in batches:
|
65 |
+
...
|
66 |
+
</code>
|
67 |
+
|
68 |
+
Args:
|
69 |
+
group: a parameter group, which is a list of parameters; should be
|
70 |
+
one of self.param_groups.
|
71 |
+
group_params_names: name for each parameter in group,
|
72 |
+
which is List[str].
|
73 |
+
"""
|
74 |
+
batches = defaultdict(
|
75 |
+
list
|
76 |
+
) # `batches` maps from tuple (dtype_as_str,*shape) to list of nn.Parameter
|
77 |
+
batches_names = defaultdict(
|
78 |
+
list
|
79 |
+
) # `batches` maps from tuple (dtype_as_str,*shape) to list of str
|
80 |
+
|
81 |
+
assert len(param_group) == len(group_params_names)
|
82 |
+
for p, named_p in zip(param_group, group_params_names):
|
83 |
+
key = (str(p.dtype), *p.shape)
|
84 |
+
batches[key].append(p)
|
85 |
+
batches_names[key].append(named_p)
|
86 |
+
|
87 |
+
batches_names_keys = list(batches_names.keys())
|
88 |
+
sorted_idx = sorted(
|
89 |
+
range(len(batches_names)), key=lambda i: batches_names_keys[i])
|
90 |
+
batches_names = [
|
91 |
+
batches_names[batches_names_keys[idx]] for idx in sorted_idx
|
92 |
+
]
|
93 |
+
batches = [batches[batches_names_keys[idx]] for idx in sorted_idx]
|
94 |
+
|
95 |
+
stacked_params_dict = dict()
|
96 |
+
|
97 |
+
# turn batches into a list, in deterministic order.
|
98 |
+
# tuples will contain tuples of (stacked_param, state, stacked_params_names),
|
99 |
+
# one for each batch in `batches`.
|
100 |
+
tuples = []
|
101 |
+
|
102 |
+
for batch, batch_names in zip(batches, batches_names):
|
103 |
+
p = batch[0]
|
104 |
+
# we arbitrarily store the state in the
|
105 |
+
# state corresponding to the 1st parameter in the
|
106 |
+
# group. class Optimizer will take care of saving/loading state.
|
107 |
+
state = self.state[p]
|
108 |
+
p_stacked = torch.stack(batch)
|
109 |
+
grad = torch.stack([
|
110 |
+
torch.zeros_like(p) if p.grad is None else p.grad for p in batch
|
111 |
+
])
|
112 |
+
p_stacked.grad = grad
|
113 |
+
stacked_params_dict[key] = p_stacked
|
114 |
+
tuples.append((p_stacked, state, batch_names))
|
115 |
+
|
116 |
+
yield tuples # <-- calling code will do the actual optimization here!
|
117 |
+
|
118 |
+
for ((stacked_params, _state, _names), batch) in zip(tuples, batches):
|
119 |
+
for i, p in enumerate(batch): # batch is list of Parameter
|
120 |
+
p.copy_(stacked_params[i])
|
121 |
+
|
122 |
+
|
123 |
+
class ScaledAdam(BatchedOptimizer):
|
124 |
+
"""
|
125 |
+
Implements 'Scaled Adam', a variant of Adam where we scale each parameter's update
|
126 |
+
proportional to the norm of that parameter; and also learn the scale of the parameter,
|
127 |
+
in log space, subject to upper and lower limits (as if we had factored each parameter as
|
128 |
+
param = underlying_param * log_scale.exp())
|
129 |
+
|
130 |
+
|
131 |
+
Args:
|
132 |
+
params: The parameters or param_groups to optimize (like other Optimizer subclasses)
|
133 |
+
lr: The learning rate. We will typically use a learning rate schedule that starts
|
134 |
+
at 0.03 and decreases over time, i.e. much higher than other common
|
135 |
+
optimizers.
|
136 |
+
clipping_scale: (e.g. 2.0)
|
137 |
+
A scale for gradient-clipping: if specified, the normalized gradients
|
138 |
+
over the whole model will be clipped to have 2-norm equal to
|
139 |
+
`clipping_scale` times the median 2-norm over the most recent period
|
140 |
+
of `clipping_update_period` minibatches. By "normalized gradients",
|
141 |
+
we mean after multiplying by the rms parameter value for this tensor
|
142 |
+
[for non-scalars]; this is appropriate because our update is scaled
|
143 |
+
by this quantity.
|
144 |
+
betas: beta1,beta2 are momentum constants for regular momentum, and moving sum-sq grad.
|
145 |
+
Must satisfy 0 < beta <= beta2 < 1.
|
146 |
+
scalar_lr_scale: A scaling factor on the learning rate, that we use to update the
|
147 |
+
scale of each parameter tensor and scalar parameters of the mode..
|
148 |
+
If each parameter were decomposed
|
149 |
+
as p * p_scale.exp(), where (p**2).mean().sqrt() == 1.0, scalar_lr_scale
|
150 |
+
would be a the scaling factor on the learning rate of p_scale.
|
151 |
+
eps: A general-purpose epsilon to prevent division by zero
|
152 |
+
param_min_rms: Minimum root-mean-square value of parameter tensor, for purposes of
|
153 |
+
learning the scale on the parameters (we'll constrain the rms of each non-scalar
|
154 |
+
parameter tensor to be >= this value)
|
155 |
+
param_max_rms: Maximum root-mean-square value of parameter tensor, for purposes of
|
156 |
+
learning the scale on the parameters (we'll constrain the rms of each non-scalar
|
157 |
+
parameter tensor to be <= this value)
|
158 |
+
scalar_max: Maximum absolute value for scalar parameters (applicable if your
|
159 |
+
model has any parameters with numel() == 1).
|
160 |
+
size_update_period: The periodicity, in steps, with which we update the size (scale)
|
161 |
+
of the parameter tensor. This is provided to save a little time
|
162 |
+
in the update.
|
163 |
+
clipping_update_period: if clipping_scale is specified, this is the period
|
164 |
+
"""
|
165 |
+
|
166 |
+
def __init__(
|
167 |
+
self,
|
168 |
+
params,
|
169 |
+
lr=3e-02,
|
170 |
+
clipping_scale=None,
|
171 |
+
betas=(0.9, 0.98),
|
172 |
+
scalar_lr_scale=0.1,
|
173 |
+
eps=1.0e-08,
|
174 |
+
param_min_rms=1.0e-05,
|
175 |
+
param_max_rms=3.0,
|
176 |
+
scalar_max=10.0,
|
177 |
+
size_update_period=4,
|
178 |
+
clipping_update_period=100,
|
179 |
+
parameters_names=None,
|
180 |
+
show_dominant_parameters=True, ):
|
181 |
+
|
182 |
+
assert parameters_names is not None, (
|
183 |
+
"Please prepare parameters_names,"
|
184 |
+
"which is a List[List[str]]. Each List[str] is for a group"
|
185 |
+
"and each str is for a parameter")
|
186 |
+
defaults = dict(
|
187 |
+
lr=lr,
|
188 |
+
clipping_scale=clipping_scale,
|
189 |
+
betas=betas,
|
190 |
+
scalar_lr_scale=scalar_lr_scale,
|
191 |
+
eps=eps,
|
192 |
+
param_min_rms=param_min_rms,
|
193 |
+
param_max_rms=param_max_rms,
|
194 |
+
scalar_max=scalar_max,
|
195 |
+
size_update_period=size_update_period,
|
196 |
+
clipping_update_period=clipping_update_period, )
|
197 |
+
|
198 |
+
super(ScaledAdam, self).__init__(params, defaults)
|
199 |
+
assert len(self.param_groups) == len(parameters_names)
|
200 |
+
self.parameters_names = parameters_names
|
201 |
+
self.show_dominant_parameters = show_dominant_parameters
|
202 |
+
|
203 |
+
def __setstate__(self, state):
|
204 |
+
super(ScaledAdam, self).__setstate__(state)
|
205 |
+
|
206 |
+
@torch.no_grad()
|
207 |
+
def step(self, closure=None):
|
208 |
+
"""Performs a single optimization step.
|
209 |
+
|
210 |
+
Arguments:
|
211 |
+
closure (callable, optional): A closure that reevaluates the model
|
212 |
+
and returns the loss.
|
213 |
+
"""
|
214 |
+
loss = None
|
215 |
+
if closure is not None:
|
216 |
+
with torch.enable_grad():
|
217 |
+
loss = closure()
|
218 |
+
|
219 |
+
batch = True
|
220 |
+
|
221 |
+
for group, group_params_names in zip(self.param_groups,
|
222 |
+
self.parameters_names):
|
223 |
+
|
224 |
+
with self.batched_params(group["params"],
|
225 |
+
group_params_names) as batches:
|
226 |
+
|
227 |
+
# batches is list of pairs (stacked_param, state). stacked_param is like
|
228 |
+
# a regular parameter, and will have a .grad, but the 1st dim corresponds to
|
229 |
+
# a stacking dim, it is not a real dim.
|
230 |
+
|
231 |
+
if (len(batches[0][1]) ==
|
232 |
+
0): # if len(first state) == 0: not yet initialized
|
233 |
+
clipping_scale = 1
|
234 |
+
else:
|
235 |
+
clipping_scale = self._get_clipping_scale(group, batches)
|
236 |
+
|
237 |
+
for p, state, _ in batches:
|
238 |
+
# Perform optimization step.
|
239 |
+
# grad is not going to be None, we handled that when creating the batches.
|
240 |
+
grad = p.grad
|
241 |
+
if grad.is_sparse:
|
242 |
+
raise RuntimeError(
|
243 |
+
"ScaledAdam optimizer does not support sparse gradients"
|
244 |
+
)
|
245 |
+
# State initialization
|
246 |
+
if len(state) == 0:
|
247 |
+
self._init_state(group, p, state)
|
248 |
+
|
249 |
+
self._step_one_batch(group, p, state, clipping_scale)
|
250 |
+
|
251 |
+
return loss
|
252 |
+
|
253 |
+
def _init_state(self, group: dict, p: Tensor, state: dict):
|
254 |
+
"""
|
255 |
+
Initializes state dict for parameter 'p'. Assumes that dim 0 of tensor p
|
256 |
+
is actually the batch dimension, corresponding to batched-together
|
257 |
+
parameters of a given shape.
|
258 |
+
|
259 |
+
|
260 |
+
Args:
|
261 |
+
group: Dict to look up configuration values.
|
262 |
+
p: The parameter that we are initializing the state for
|
263 |
+
state: Dict from string to whatever state we are initializing
|
264 |
+
"""
|
265 |
+
size_update_period = group["size_update_period"]
|
266 |
+
|
267 |
+
state["step"] = 0
|
268 |
+
|
269 |
+
kwargs = {"device": p.device, "dtype": p.dtype}
|
270 |
+
|
271 |
+
# 'delta' implements conventional momentum. There are
|
272 |
+
# several different kinds of update going on, so rather than
|
273 |
+
# compute "exp_avg" like in Adam, we store and decay a
|
274 |
+
# parameter-change "delta", which combines all forms of
|
275 |
+
# update. this is equivalent to how it's done in Adam,
|
276 |
+
# except for the first few steps.
|
277 |
+
state["delta"] = torch.zeros_like(
|
278 |
+
p, memory_format=torch.preserve_format)
|
279 |
+
|
280 |
+
batch_size = p.shape[0]
|
281 |
+
numel = p.numel() // batch_size
|
282 |
+
numel = p.numel()
|
283 |
+
|
284 |
+
if numel > 1:
|
285 |
+
# "param_rms" just periodically records the scalar root-mean-square value of
|
286 |
+
# the parameter tensor.
|
287 |
+
# it has a shape like (batch_size, 1, 1, 1, 1)
|
288 |
+
param_rms = (
|
289 |
+
(p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt())
|
290 |
+
state["param_rms"] = param_rms
|
291 |
+
|
292 |
+
state["scale_exp_avg_sq"] = torch.zeros_like(param_rms)
|
293 |
+
state["scale_grads"] = torch.zeros(size_update_period,
|
294 |
+
*param_rms.shape, **kwargs)
|
295 |
+
|
296 |
+
# exp_avg_sq is the weighted sum of scaled gradients. as in Adam.
|
297 |
+
state["exp_avg_sq"] = torch.zeros_like(
|
298 |
+
p, memory_format=torch.preserve_format)
|
299 |
+
|
300 |
+
def _get_clipping_scale(self,
|
301 |
+
group: dict,
|
302 |
+
tuples: List[Tuple[Tensor, dict, List[str]]]
|
303 |
+
) -> float:
|
304 |
+
"""
|
305 |
+
Returns a scalar factor <= 1.0 that dictates gradient clipping, i.e. we will scale the gradients
|
306 |
+
by this amount before applying the rest of the update.
|
307 |
+
|
308 |
+
Args:
|
309 |
+
group: the parameter group, an item in self.param_groups
|
310 |
+
tuples: a list of tuples of (param, state, param_names)
|
311 |
+
where param is a batched set of parameters,
|
312 |
+
with a .grad (1st dim is batch dim)
|
313 |
+
and state is the state-dict where optimization parameters are kept.
|
314 |
+
param_names is a List[str] while each str is name for a parameter
|
315 |
+
in batched set of parameters "param".
|
316 |
+
"""
|
317 |
+
assert len(tuples) >= 1
|
318 |
+
clipping_scale = group["clipping_scale"]
|
319 |
+
(first_p, first_state, _) = tuples[0]
|
320 |
+
step = first_state["step"]
|
321 |
+
if clipping_scale is None or step == 0:
|
322 |
+
# no clipping. return early on step == 0 because the other
|
323 |
+
# parameters' state won't have been initialized yet.
|
324 |
+
return 1.0
|
325 |
+
clipping_update_period = group["clipping_update_period"]
|
326 |
+
|
327 |
+
tot_sumsq = torch.tensor(0.0, device=first_p.device)
|
328 |
+
for (p, state, param_names) in tuples:
|
329 |
+
grad = p.grad
|
330 |
+
if grad.is_sparse:
|
331 |
+
raise RuntimeError(
|
332 |
+
"ScaledAdam optimizer does not support sparse gradients")
|
333 |
+
if p.numel() == p.shape[0]: # a batch of scalars
|
334 |
+
tot_sumsq += (grad**2).sum() # sum() to change shape [1] to []
|
335 |
+
else:
|
336 |
+
tot_sumsq += ((grad * state["param_rms"])**2).sum()
|
337 |
+
|
338 |
+
tot_norm = tot_sumsq.sqrt()
|
339 |
+
if "model_norms" not in first_state:
|
340 |
+
first_state["model_norms"] = torch.zeros(
|
341 |
+
clipping_update_period, device=p.device)
|
342 |
+
first_state["model_norms"][step % clipping_update_period] = tot_norm
|
343 |
+
|
344 |
+
if step % clipping_update_period == 0:
|
345 |
+
# Print some stats.
|
346 |
+
# We don't reach here if step == 0 because we would have returned
|
347 |
+
# above.
|
348 |
+
sorted_norms = first_state["model_norms"].sort()[0].to("cpu")
|
349 |
+
quartiles = []
|
350 |
+
for n in range(0, 5):
|
351 |
+
index = min(
|
352 |
+
clipping_update_period - 1,
|
353 |
+
(clipping_update_period // 4) * n, )
|
354 |
+
quartiles.append(sorted_norms[index].item())
|
355 |
+
|
356 |
+
median = quartiles[2]
|
357 |
+
threshold = clipping_scale * median
|
358 |
+
first_state["model_norm_threshold"] = threshold
|
359 |
+
percent_clipped = (first_state["num_clipped"] * 100.0 /
|
360 |
+
clipping_update_period
|
361 |
+
if "num_clipped" in first_state else 0.0)
|
362 |
+
first_state["num_clipped"] = 0
|
363 |
+
quartiles = " ".join(["%.3e" % x for x in quartiles])
|
364 |
+
logging.info(
|
365 |
+
f"Clipping_scale={clipping_scale}, grad-norm quartiles {quartiles}, "
|
366 |
+
f"threshold={threshold:.3e}, percent-clipped={percent_clipped:.1f}"
|
367 |
+
)
|
368 |
+
|
369 |
+
if step < clipping_update_period:
|
370 |
+
return 1.0 # We have not yet estimated a norm to clip to.
|
371 |
+
else:
|
372 |
+
try:
|
373 |
+
model_norm_threshold = first_state["model_norm_threshold"]
|
374 |
+
except KeyError:
|
375 |
+
logging.info(
|
376 |
+
"Warning: model_norm_threshold not in state: possibly "
|
377 |
+
"you changed config when restarting, adding clipping_scale option?"
|
378 |
+
)
|
379 |
+
return 1.0
|
380 |
+
ans = min(1.0, (model_norm_threshold / (tot_norm + 1.0e-20)).item())
|
381 |
+
if ans < 1.0:
|
382 |
+
first_state["num_clipped"] += 1
|
383 |
+
if ans < 0.1:
|
384 |
+
logging.warn(
|
385 |
+
f"Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}"
|
386 |
+
)
|
387 |
+
if self.show_dominant_parameters:
|
388 |
+
assert p.shape[0] == len(param_names)
|
389 |
+
self._show_gradient_dominating_parameter(tuples, tot_sumsq)
|
390 |
+
return ans
|
391 |
+
|
392 |
+
def _show_gradient_dominating_parameter(
|
393 |
+
self, tuples: List[Tuple[Tensor, dict, List[str]]],
|
394 |
+
tot_sumsq: Tensor):
|
395 |
+
"""
|
396 |
+
Show information of parameter wihch dominanting tot_sumsq.
|
397 |
+
|
398 |
+
Args:
|
399 |
+
tuples: a list of tuples of (param, state, param_names)
|
400 |
+
where param is a batched set of parameters,
|
401 |
+
with a .grad (1st dim is batch dim)
|
402 |
+
and state is the state-dict where optimization parameters are kept.
|
403 |
+
param_names is a List[str] while each str is name for a parameter
|
404 |
+
in batched set of parameters "param".
|
405 |
+
tot_sumsq: sumsq of all parameters. Though it's could be calculated
|
406 |
+
from tuples, we still pass it to save some time.
|
407 |
+
"""
|
408 |
+
all_sumsq_orig = {}
|
409 |
+
for (p, state, batch_param_names) in tuples:
|
410 |
+
# p is a stacked batch parameters.
|
411 |
+
batch_grad = p.grad
|
412 |
+
if p.numel() == p.shape[0]: # a batch of scalars
|
413 |
+
batch_sumsq_orig = batch_grad**2
|
414 |
+
# Dummpy values used by following `zip` statement.
|
415 |
+
batch_rms_orig = torch.ones(p.shape[0])
|
416 |
+
else:
|
417 |
+
batch_rms_orig = state["param_rms"]
|
418 |
+
batch_sumsq_orig = ((batch_grad * batch_rms_orig)**2).sum(
|
419 |
+
dim=list(range(1, batch_grad.ndim)))
|
420 |
+
|
421 |
+
for name, sumsq_orig, rms, grad in zip(batch_param_names,
|
422 |
+
batch_sumsq_orig,
|
423 |
+
batch_rms_orig, batch_grad):
|
424 |
+
|
425 |
+
proportion_orig = sumsq_orig / tot_sumsq
|
426 |
+
all_sumsq_orig[name] = (proportion_orig, sumsq_orig, rms, grad)
|
427 |
+
|
428 |
+
assert torch.isclose(
|
429 |
+
sum([value[0] for value in all_sumsq_orig.values()]).cpu(),
|
430 |
+
torch.tensor(1.0), )
|
431 |
+
sorted_by_proportion = {
|
432 |
+
k: v
|
433 |
+
for k, v in sorted(
|
434 |
+
all_sumsq_orig.items(),
|
435 |
+
key=lambda item: item[1][0],
|
436 |
+
reverse=True, )
|
437 |
+
}
|
438 |
+
dominant_param_name = next(iter(sorted_by_proportion))
|
439 |
+
(dominant_proportion, dominant_sumsq, dominant_rms,
|
440 |
+
dominant_grad, ) = sorted_by_proportion[dominant_param_name]
|
441 |
+
logging.info(f"Parameter Dominanting tot_sumsq {dominant_param_name}"
|
442 |
+
f" with proportion {dominant_proportion:.2f},"
|
443 |
+
f" where dominant_sumsq=(grad_sumsq*orig_rms_sq)"
|
444 |
+
f"={dominant_sumsq:.3e},"
|
445 |
+
f" grad_sumsq = {(dominant_grad**2).sum():.3e},"
|
446 |
+
f" orig_rms_sq={(dominant_rms**2).item():.3e}")
|
447 |
+
|
448 |
+
def _step_one_batch(self,
|
449 |
+
group: dict,
|
450 |
+
p: Tensor,
|
451 |
+
state: dict,
|
452 |
+
clipping_scale: float):
|
453 |
+
"""
|
454 |
+
Do the step for one parameter, which is actually going to be a batch of
|
455 |
+
`real` parameters, with dim 0 as the batch dim.
|
456 |
+
Args:
|
457 |
+
group: dict to look up configuration values
|
458 |
+
p: parameter to update (actually multiple parameters stacked together
|
459 |
+
as a batch)
|
460 |
+
state: state-dict for p, to look up the optimizer state
|
461 |
+
"""
|
462 |
+
lr = group["lr"]
|
463 |
+
size_update_period = group["size_update_period"]
|
464 |
+
beta1 = group["betas"][0]
|
465 |
+
|
466 |
+
grad = p.grad
|
467 |
+
if clipping_scale != 1.0:
|
468 |
+
grad = grad * clipping_scale
|
469 |
+
step = state["step"]
|
470 |
+
delta = state["delta"]
|
471 |
+
|
472 |
+
delta.mul_(beta1)
|
473 |
+
batch_size = p.shape[0]
|
474 |
+
numel = p.numel() // batch_size
|
475 |
+
if numel > 1:
|
476 |
+
# Update the size/scale of p, and set param_rms
|
477 |
+
scale_grads = state["scale_grads"]
|
478 |
+
scale_grads[step % size_update_period] = (p * grad).sum(
|
479 |
+
dim=list(range(1, p.ndim)), keepdim=True)
|
480 |
+
if step % size_update_period == size_update_period - 1:
|
481 |
+
param_rms = state["param_rms"] # shape: (batch_size, 1, 1, ..)
|
482 |
+
param_rms.copy_((p**2)
|
483 |
+
.mean(dim=list(range(1, p.ndim)), keepdim=True)
|
484 |
+
.sqrt())
|
485 |
+
if step > 0:
|
486 |
+
# self._size_update() learns the overall scale on the
|
487 |
+
# parameter, by shrinking or expanding it.
|
488 |
+
self._size_update(group, scale_grads, p, state)
|
489 |
+
|
490 |
+
if numel == 1:
|
491 |
+
# For parameters with 1 element we just use regular Adam.
|
492 |
+
# Updates delta.
|
493 |
+
self._step_scalar(group, p, state)
|
494 |
+
else:
|
495 |
+
self._step(group, p, state)
|
496 |
+
|
497 |
+
state["step"] = step + 1
|
498 |
+
|
499 |
+
def _size_update(self,
|
500 |
+
group: dict,
|
501 |
+
scale_grads: Tensor,
|
502 |
+
p: Tensor,
|
503 |
+
state: dict) -> None:
|
504 |
+
"""
|
505 |
+
Called only where p.numel() > 1, this updates the scale of the parameter.
|
506 |
+
If we imagine: p = underlying_param * scale.exp(), and we are doing
|
507 |
+
gradient descent on underlying param and on scale, this function does the update
|
508 |
+
on `scale`.
|
509 |
+
|
510 |
+
Args:
|
511 |
+
group: dict to look up configuration values
|
512 |
+
scale_grads: a tensor of shape (size_update_period, batch_size, 1, 1,...) containing
|
513 |
+
grads w.r.t. the scales.
|
514 |
+
p: The parameter to update
|
515 |
+
state: The state-dict of p
|
516 |
+
"""
|
517 |
+
|
518 |
+
param_rms = state["param_rms"]
|
519 |
+
beta1, beta2 = group["betas"]
|
520 |
+
size_lr = group["lr"] * group["scalar_lr_scale"]
|
521 |
+
param_min_rms = group["param_min_rms"]
|
522 |
+
param_max_rms = group["param_max_rms"]
|
523 |
+
eps = group["eps"]
|
524 |
+
step = state["step"]
|
525 |
+
batch_size = p.shape[0]
|
526 |
+
|
527 |
+
size_update_period = scale_grads.shape[0]
|
528 |
+
# correct beta2 for the size update period: we will have
|
529 |
+
# faster decay at this level.
|
530 |
+
beta2_corr = beta2**size_update_period
|
531 |
+
|
532 |
+
scale_exp_avg_sq = state[
|
533 |
+
"scale_exp_avg_sq"] # shape: (batch_size, 1, 1, ..)
|
534 |
+
scale_exp_avg_sq.mul_(beta2_corr).add_(
|
535 |
+
(scale_grads**2).mean(dim=0), # mean over dim `size_update_period`
|
536 |
+
alpha=1 - beta2_corr, ) # shape is (batch_size, 1, 1, ...)
|
537 |
+
|
538 |
+
# The 1st time we reach here is when size_step == 1.
|
539 |
+
size_step = (step + 1) // size_update_period
|
540 |
+
bias_correction2 = 1 - beta2_corr**size_step
|
541 |
+
# we don't bother with bias_correction1; this will help prevent divergence
|
542 |
+
# at the start of training.
|
543 |
+
|
544 |
+
denom = scale_exp_avg_sq.sqrt() + eps
|
545 |
+
|
546 |
+
scale_step = (-size_lr * (bias_correction2**0.5) *
|
547 |
+
scale_grads.sum(dim=0) / denom)
|
548 |
+
|
549 |
+
is_too_small = param_rms < param_min_rms
|
550 |
+
is_too_large = param_rms > param_max_rms
|
551 |
+
|
552 |
+
# when the param gets too small, just don't shrink it any further.
|
553 |
+
scale_step.masked_fill_(is_too_small, 0.0)
|
554 |
+
# when it gets too large, stop it from getting any larger.
|
555 |
+
scale_step.masked_fill_(is_too_large, -size_lr * size_update_period)
|
556 |
+
delta = state["delta"]
|
557 |
+
# the factor of (1-beta1) relates to momentum.
|
558 |
+
delta.add_(p * scale_step, alpha=(1 - beta1))
|
559 |
+
|
560 |
+
def _step(self, group: dict, p: Tensor, state: dict):
|
561 |
+
"""
|
562 |
+
This function does the core update of self.step(), in the case where the members of
|
563 |
+
the batch have more than 1 element.
|
564 |
+
|
565 |
+
Args:
|
566 |
+
group: A dict which will be used to look up configuration values
|
567 |
+
p: The parameter to be updated
|
568 |
+
grad: The grad of p
|
569 |
+
state: The state-dict corresponding to parameter p
|
570 |
+
|
571 |
+
This function modifies p.
|
572 |
+
"""
|
573 |
+
grad = p.grad
|
574 |
+
lr = group["lr"]
|
575 |
+
beta1, beta2 = group["betas"]
|
576 |
+
eps = group["eps"]
|
577 |
+
param_min_rms = group["param_min_rms"]
|
578 |
+
step = state["step"]
|
579 |
+
|
580 |
+
exp_avg_sq = state["exp_avg_sq"]
|
581 |
+
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=(1 - beta2))
|
582 |
+
|
583 |
+
this_step = state["step"] - (state["zero_step"]
|
584 |
+
if "zero_step" in state else 0)
|
585 |
+
bias_correction2 = 1 - beta2**(this_step + 1)
|
586 |
+
if bias_correction2 < 0.99:
|
587 |
+
# note: not in-place.
|
588 |
+
exp_avg_sq = exp_avg_sq * (1.0 / bias_correction2)
|
589 |
+
|
590 |
+
denom = exp_avg_sq.sqrt()
|
591 |
+
denom += eps
|
592 |
+
grad = grad / denom
|
593 |
+
|
594 |
+
alpha = -lr * (1 - beta1) * state["param_rms"].clamp(min=param_min_rms)
|
595 |
+
|
596 |
+
delta = state["delta"]
|
597 |
+
delta.add_(grad * alpha)
|
598 |
+
p.add_(delta)
|
599 |
+
|
600 |
+
def _step_scalar(self, group: dict, p: Tensor, state: dict):
|
601 |
+
"""
|
602 |
+
A simplified form of the core update for scalar tensors, where we cannot get a good
|
603 |
+
estimate of the parameter rms.
|
604 |
+
"""
|
605 |
+
beta1, beta2 = group["betas"]
|
606 |
+
scalar_max = group["scalar_max"]
|
607 |
+
eps = group["eps"]
|
608 |
+
lr = group["lr"] * group["scalar_lr_scale"]
|
609 |
+
grad = p.grad
|
610 |
+
|
611 |
+
exp_avg_sq = state["exp_avg_sq"] # shape: (batch_size,)
|
612 |
+
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
613 |
+
|
614 |
+
# bias_correction2 is like in Adam. Don't bother with bias_correction1;
|
615 |
+
# slower update at the start will help stability anyway.
|
616 |
+
bias_correction2 = 1 - beta2**(state["step"] + 1)
|
617 |
+
denom = (exp_avg_sq / bias_correction2).sqrt() + eps
|
618 |
+
|
619 |
+
delta = state["delta"]
|
620 |
+
delta.add_(grad / denom, alpha=-lr * (1 - beta1))
|
621 |
+
p.clamp_(min=-scalar_max, max=scalar_max)
|
622 |
+
p.add_(delta)
|
AR/modules/patched_mha_with_cache.py
ADDED
@@ -0,0 +1,463 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.nn.functional import *
|
2 |
+
from torch.nn.functional import (
|
3 |
+
_mha_shape_check,
|
4 |
+
_canonical_mask,
|
5 |
+
_none_or_dtype,
|
6 |
+
_in_projection_packed,
|
7 |
+
)
|
8 |
+
|
9 |
+
# import torch
|
10 |
+
# Tensor = torch.Tensor
|
11 |
+
# from typing import Callable, List, Optional, Tuple, Union
|
12 |
+
|
13 |
+
|
14 |
+
def multi_head_attention_forward_patched(
|
15 |
+
query: Tensor,
|
16 |
+
key: Tensor,
|
17 |
+
value: Tensor,
|
18 |
+
embed_dim_to_check: int,
|
19 |
+
num_heads: int,
|
20 |
+
in_proj_weight: Optional[Tensor],
|
21 |
+
in_proj_bias: Optional[Tensor],
|
22 |
+
bias_k: Optional[Tensor],
|
23 |
+
bias_v: Optional[Tensor],
|
24 |
+
add_zero_attn: bool,
|
25 |
+
dropout_p: float,
|
26 |
+
out_proj_weight: Tensor,
|
27 |
+
out_proj_bias: Optional[Tensor],
|
28 |
+
training: bool = True,
|
29 |
+
key_padding_mask: Optional[Tensor] = None,
|
30 |
+
need_weights: bool = True,
|
31 |
+
attn_mask: Optional[Tensor] = None,
|
32 |
+
use_separate_proj_weight: bool = False,
|
33 |
+
q_proj_weight: Optional[Tensor] = None,
|
34 |
+
k_proj_weight: Optional[Tensor] = None,
|
35 |
+
v_proj_weight: Optional[Tensor] = None,
|
36 |
+
static_k: Optional[Tensor] = None,
|
37 |
+
static_v: Optional[Tensor] = None,
|
38 |
+
average_attn_weights: bool = True,
|
39 |
+
is_causal: bool = False,
|
40 |
+
cache=None,
|
41 |
+
) -> Tuple[Tensor, Optional[Tensor]]:
|
42 |
+
r"""
|
43 |
+
Args:
|
44 |
+
query, key, value: map a query and a set of key-value pairs to an output.
|
45 |
+
See "Attention Is All You Need" for more details.
|
46 |
+
embed_dim_to_check: total dimension of the model.
|
47 |
+
num_heads: parallel attention heads.
|
48 |
+
in_proj_weight, in_proj_bias: input projection weight and bias.
|
49 |
+
bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
|
50 |
+
add_zero_attn: add a new batch of zeros to the key and
|
51 |
+
value sequences at dim=1.
|
52 |
+
dropout_p: probability of an element to be zeroed.
|
53 |
+
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
54 |
+
training: apply dropout if is ``True``.
|
55 |
+
key_padding_mask: if provided, specified padding elements in the key will
|
56 |
+
be ignored by the attention. This is an binary mask. When the value is True,
|
57 |
+
the corresponding value on the attention layer will be filled with -inf.
|
58 |
+
need_weights: output attn_output_weights.
|
59 |
+
Default: `True`
|
60 |
+
Note: `needs_weight` defaults to `True`, but should be set to `False`
|
61 |
+
For best performance when attention weights are not nedeeded.
|
62 |
+
*Setting needs_weights to `True`
|
63 |
+
leads to a significant performance degradation.*
|
64 |
+
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
65 |
+
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
66 |
+
is_causal: If specified, applies a causal mask as attention mask, and ignores
|
67 |
+
attn_mask for computing scaled dot product attention.
|
68 |
+
Default: ``False``.
|
69 |
+
.. warning::
|
70 |
+
is_causal is provides a hint that the attn_mask is the
|
71 |
+
causal mask.Providing incorrect hints can result in
|
72 |
+
incorrect execution, including forward and backward
|
73 |
+
compatibility.
|
74 |
+
use_separate_proj_weight: the function accept the proj. weights for query, key,
|
75 |
+
and value in different forms. If false, in_proj_weight will be used, which is
|
76 |
+
a combination of q_proj_weight, k_proj_weight, v_proj_weight.
|
77 |
+
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
|
78 |
+
static_k, static_v: static key and value used for attention operators.
|
79 |
+
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across heads.
|
80 |
+
Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an effect
|
81 |
+
when ``need_weights=True.``. Default: True
|
82 |
+
|
83 |
+
|
84 |
+
Shape:
|
85 |
+
Inputs:
|
86 |
+
- query: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
87 |
+
the embedding dimension.
|
88 |
+
- key: :math:`(S, E)` or :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
89 |
+
the embedding dimension.
|
90 |
+
- value: :math:`(S, E)` or :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
91 |
+
the embedding dimension.
|
92 |
+
- key_padding_mask: :math:`(S)` or :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
93 |
+
If a FloatTensor is provided, it will be directly added to the value.
|
94 |
+
If a BoolTensor is provided, the positions with the
|
95 |
+
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
96 |
+
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
97 |
+
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
98 |
+
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
99 |
+
positions. If a BoolTensor is provided, positions with ``True``
|
100 |
+
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
101 |
+
is provided, it will be added to the attention weight.
|
102 |
+
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
103 |
+
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
104 |
+
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
105 |
+
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
106 |
+
|
107 |
+
Outputs:
|
108 |
+
- attn_output: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
109 |
+
E is the embedding dimension.
|
110 |
+
- attn_output_weights: Only returned when ``need_weights=True``. If ``average_attn_weights=True``, returns
|
111 |
+
attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
|
112 |
+
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
|
113 |
+
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
|
114 |
+
head of shape :math:`(num_heads, L, S)` when input is unbatched or :math:`(N, num_heads, L, S)`.
|
115 |
+
"""
|
116 |
+
tens_ops = (
|
117 |
+
query,
|
118 |
+
key,
|
119 |
+
value,
|
120 |
+
in_proj_weight,
|
121 |
+
in_proj_bias,
|
122 |
+
bias_k,
|
123 |
+
bias_v,
|
124 |
+
out_proj_weight,
|
125 |
+
out_proj_bias,
|
126 |
+
)
|
127 |
+
if has_torch_function(tens_ops):
|
128 |
+
return handle_torch_function(
|
129 |
+
multi_head_attention_forward,
|
130 |
+
tens_ops,
|
131 |
+
query,
|
132 |
+
key,
|
133 |
+
value,
|
134 |
+
embed_dim_to_check,
|
135 |
+
num_heads,
|
136 |
+
in_proj_weight,
|
137 |
+
in_proj_bias,
|
138 |
+
bias_k,
|
139 |
+
bias_v,
|
140 |
+
add_zero_attn,
|
141 |
+
dropout_p,
|
142 |
+
out_proj_weight,
|
143 |
+
out_proj_bias,
|
144 |
+
training=training,
|
145 |
+
key_padding_mask=key_padding_mask,
|
146 |
+
need_weights=need_weights,
|
147 |
+
attn_mask=attn_mask,
|
148 |
+
is_causal=is_causal,
|
149 |
+
use_separate_proj_weight=use_separate_proj_weight,
|
150 |
+
q_proj_weight=q_proj_weight,
|
151 |
+
k_proj_weight=k_proj_weight,
|
152 |
+
v_proj_weight=v_proj_weight,
|
153 |
+
static_k=static_k,
|
154 |
+
static_v=static_v,
|
155 |
+
average_attn_weights=average_attn_weights,
|
156 |
+
cache=cache,
|
157 |
+
)
|
158 |
+
|
159 |
+
is_batched = _mha_shape_check(
|
160 |
+
query, key, value, key_padding_mask, attn_mask, num_heads
|
161 |
+
)
|
162 |
+
|
163 |
+
# For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
|
164 |
+
# is batched, run the computation and before returning squeeze the
|
165 |
+
# batch dimension so that the output doesn't carry this temporary batch dimension.
|
166 |
+
if not is_batched:
|
167 |
+
# unsqueeze if the input is unbatched
|
168 |
+
query = query.unsqueeze(1)
|
169 |
+
key = key.unsqueeze(1)
|
170 |
+
value = value.unsqueeze(1)
|
171 |
+
if key_padding_mask is not None:
|
172 |
+
key_padding_mask = key_padding_mask.unsqueeze(0)
|
173 |
+
|
174 |
+
# set up shape vars
|
175 |
+
tgt_len, bsz, embed_dim = query.shape
|
176 |
+
src_len, _, _ = key.shape
|
177 |
+
|
178 |
+
key_padding_mask = _canonical_mask(
|
179 |
+
mask=key_padding_mask,
|
180 |
+
mask_name="key_padding_mask",
|
181 |
+
other_type=_none_or_dtype(attn_mask),
|
182 |
+
other_name="attn_mask",
|
183 |
+
target_type=query.dtype,
|
184 |
+
)
|
185 |
+
|
186 |
+
if is_causal and attn_mask is None:
|
187 |
+
raise RuntimeError(
|
188 |
+
"Need attn_mask if specifying the is_causal hint. "
|
189 |
+
"You may use the Transformer module method "
|
190 |
+
"`generate_square_subsequent_mask` to create this mask."
|
191 |
+
)
|
192 |
+
|
193 |
+
if is_causal and key_padding_mask is None and not need_weights:
|
194 |
+
# when we have a kpm or need weights, we need attn_mask
|
195 |
+
# Otherwise, we use the is_causal hint go as is_causal
|
196 |
+
# indicator to SDPA.
|
197 |
+
attn_mask = None
|
198 |
+
else:
|
199 |
+
attn_mask = _canonical_mask(
|
200 |
+
mask=attn_mask,
|
201 |
+
mask_name="attn_mask",
|
202 |
+
other_type=None,
|
203 |
+
other_name="",
|
204 |
+
target_type=query.dtype,
|
205 |
+
check_other=False,
|
206 |
+
)
|
207 |
+
|
208 |
+
if key_padding_mask is not None:
|
209 |
+
# We have the attn_mask, and use that to merge kpm into it.
|
210 |
+
# Turn off use of is_causal hint, as the merged mask is no
|
211 |
+
# longer causal.
|
212 |
+
is_causal = False
|
213 |
+
|
214 |
+
assert (
|
215 |
+
embed_dim == embed_dim_to_check
|
216 |
+
), f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
|
217 |
+
if isinstance(embed_dim, torch.Tensor):
|
218 |
+
# embed_dim can be a tensor when JIT tracing
|
219 |
+
head_dim = embed_dim.div(num_heads, rounding_mode="trunc")
|
220 |
+
else:
|
221 |
+
head_dim = embed_dim // num_heads
|
222 |
+
assert (
|
223 |
+
head_dim * num_heads == embed_dim
|
224 |
+
), f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
|
225 |
+
if use_separate_proj_weight:
|
226 |
+
# allow MHA to have different embedding dimensions when separate projection weights are used
|
227 |
+
assert (
|
228 |
+
key.shape[:2] == value.shape[:2]
|
229 |
+
), f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
|
230 |
+
else:
|
231 |
+
assert (
|
232 |
+
key.shape == value.shape
|
233 |
+
), f"key shape {key.shape} does not match value shape {value.shape}"
|
234 |
+
|
235 |
+
#
|
236 |
+
# compute in-projection
|
237 |
+
#
|
238 |
+
if not use_separate_proj_weight:
|
239 |
+
assert (
|
240 |
+
in_proj_weight is not None
|
241 |
+
), "use_separate_proj_weight is False but in_proj_weight is None"
|
242 |
+
q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
|
243 |
+
else:
|
244 |
+
assert (
|
245 |
+
q_proj_weight is not None
|
246 |
+
), "use_separate_proj_weight is True but q_proj_weight is None"
|
247 |
+
assert (
|
248 |
+
k_proj_weight is not None
|
249 |
+
), "use_separate_proj_weight is True but k_proj_weight is None"
|
250 |
+
assert (
|
251 |
+
v_proj_weight is not None
|
252 |
+
), "use_separate_proj_weight is True but v_proj_weight is None"
|
253 |
+
if in_proj_bias is None:
|
254 |
+
b_q = b_k = b_v = None
|
255 |
+
else:
|
256 |
+
b_q, b_k, b_v = in_proj_bias.chunk(3)
|
257 |
+
q, k, v = _in_projection(
|
258 |
+
query,
|
259 |
+
key,
|
260 |
+
value,
|
261 |
+
q_proj_weight,
|
262 |
+
k_proj_weight,
|
263 |
+
v_proj_weight,
|
264 |
+
b_q,
|
265 |
+
b_k,
|
266 |
+
b_v,
|
267 |
+
)
|
268 |
+
if cache != None:
|
269 |
+
if cache["first_infer"] == 1:
|
270 |
+
cache["k"][cache["stage"]] = k
|
271 |
+
# print(0,cache["k"].shape)
|
272 |
+
cache["v"][cache["stage"]] = v
|
273 |
+
else: ###12个layer每个都要留自己的cache_kv
|
274 |
+
# print(1,cache["k"].shape)
|
275 |
+
cache["k"][cache["stage"]] = torch.cat(
|
276 |
+
[cache["k"][cache["stage"]], k], 0
|
277 |
+
) ##本来时序是1,但是proj的时候可能transpose了所以时序到0维了
|
278 |
+
cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]], v], 0)
|
279 |
+
# print(2, cache["k"].shape)
|
280 |
+
src_len = cache["k"][cache["stage"]].shape[0]
|
281 |
+
k = cache["k"][cache["stage"]]
|
282 |
+
v = cache["v"][cache["stage"]]
|
283 |
+
# if attn_mask is not None:
|
284 |
+
# attn_mask=attn_mask[-1:,]
|
285 |
+
# print(attn_mask.shape,attn_mask)
|
286 |
+
cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
|
287 |
+
# print(2333,cache)
|
288 |
+
# prep attention mask
|
289 |
+
|
290 |
+
attn_mask = _canonical_mask(
|
291 |
+
mask=attn_mask,
|
292 |
+
mask_name="attn_mask",
|
293 |
+
other_type=None,
|
294 |
+
other_name="",
|
295 |
+
target_type=q.dtype,
|
296 |
+
check_other=False,
|
297 |
+
)
|
298 |
+
|
299 |
+
if attn_mask is not None:
|
300 |
+
# ensure attn_mask's dim is 3
|
301 |
+
if attn_mask.dim() == 2:
|
302 |
+
correct_2d_size = (tgt_len, src_len)
|
303 |
+
if attn_mask.shape != correct_2d_size:
|
304 |
+
raise RuntimeError(
|
305 |
+
f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}."
|
306 |
+
)
|
307 |
+
attn_mask = attn_mask.unsqueeze(0)
|
308 |
+
elif attn_mask.dim() == 3:
|
309 |
+
correct_3d_size = (bsz * num_heads, tgt_len, src_len)
|
310 |
+
if attn_mask.shape != correct_3d_size:
|
311 |
+
raise RuntimeError(
|
312 |
+
f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}."
|
313 |
+
)
|
314 |
+
else:
|
315 |
+
raise RuntimeError(
|
316 |
+
f"attn_mask's dimension {attn_mask.dim()} is not supported"
|
317 |
+
)
|
318 |
+
|
319 |
+
# add bias along batch dimension (currently second)
|
320 |
+
if bias_k is not None and bias_v is not None:
|
321 |
+
assert static_k is None, "bias cannot be added to static key."
|
322 |
+
assert static_v is None, "bias cannot be added to static value."
|
323 |
+
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
|
324 |
+
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
|
325 |
+
if attn_mask is not None:
|
326 |
+
attn_mask = pad(attn_mask, (0, 1))
|
327 |
+
if key_padding_mask is not None:
|
328 |
+
key_padding_mask = pad(key_padding_mask, (0, 1))
|
329 |
+
else:
|
330 |
+
assert bias_k is None
|
331 |
+
assert bias_v is None
|
332 |
+
|
333 |
+
#
|
334 |
+
# reshape q, k, v for multihead attention and make em batch first
|
335 |
+
#
|
336 |
+
q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
|
337 |
+
if static_k is None:
|
338 |
+
k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
339 |
+
else:
|
340 |
+
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
341 |
+
assert (
|
342 |
+
static_k.size(0) == bsz * num_heads
|
343 |
+
), f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
|
344 |
+
assert (
|
345 |
+
static_k.size(2) == head_dim
|
346 |
+
), f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
|
347 |
+
k = static_k
|
348 |
+
if static_v is None:
|
349 |
+
v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
350 |
+
else:
|
351 |
+
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
352 |
+
assert (
|
353 |
+
static_v.size(0) == bsz * num_heads
|
354 |
+
), f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
|
355 |
+
assert (
|
356 |
+
static_v.size(2) == head_dim
|
357 |
+
), f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
|
358 |
+
v = static_v
|
359 |
+
|
360 |
+
# add zero attention along batch dimension (now first)
|
361 |
+
if add_zero_attn:
|
362 |
+
zero_attn_shape = (bsz * num_heads, 1, head_dim)
|
363 |
+
k = torch.cat(
|
364 |
+
[k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1
|
365 |
+
)
|
366 |
+
v = torch.cat(
|
367 |
+
[v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1
|
368 |
+
)
|
369 |
+
if attn_mask is not None:
|
370 |
+
attn_mask = pad(attn_mask, (0, 1))
|
371 |
+
if key_padding_mask is not None:
|
372 |
+
key_padding_mask = pad(key_padding_mask, (0, 1))
|
373 |
+
|
374 |
+
# update source sequence length after adjustments
|
375 |
+
src_len = k.size(1)
|
376 |
+
|
377 |
+
# merge key padding and attention masks
|
378 |
+
if key_padding_mask is not None:
|
379 |
+
assert key_padding_mask.shape == (
|
380 |
+
bsz,
|
381 |
+
src_len,
|
382 |
+
), f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
|
383 |
+
key_padding_mask = (
|
384 |
+
key_padding_mask.view(bsz, 1, 1, src_len)
|
385 |
+
.expand(-1, num_heads, -1, -1)
|
386 |
+
.reshape(bsz * num_heads, 1, src_len)
|
387 |
+
)
|
388 |
+
if attn_mask is None:
|
389 |
+
attn_mask = key_padding_mask
|
390 |
+
else:
|
391 |
+
attn_mask = attn_mask + key_padding_mask
|
392 |
+
|
393 |
+
# adjust dropout probability
|
394 |
+
if not training:
|
395 |
+
dropout_p = 0.0
|
396 |
+
|
397 |
+
#
|
398 |
+
# (deep breath) calculate attention and out projection
|
399 |
+
#
|
400 |
+
|
401 |
+
if need_weights:
|
402 |
+
B, Nt, E = q.shape
|
403 |
+
q_scaled = q / math.sqrt(E)
|
404 |
+
|
405 |
+
assert not (
|
406 |
+
is_causal and attn_mask is None
|
407 |
+
), "FIXME: is_causal not implemented for need_weights"
|
408 |
+
|
409 |
+
if attn_mask is not None:
|
410 |
+
attn_output_weights = torch.baddbmm(
|
411 |
+
attn_mask, q_scaled, k.transpose(-2, -1)
|
412 |
+
)
|
413 |
+
else:
|
414 |
+
attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
|
415 |
+
attn_output_weights = softmax(attn_output_weights, dim=-1)
|
416 |
+
if dropout_p > 0.0:
|
417 |
+
attn_output_weights = dropout(attn_output_weights, p=dropout_p)
|
418 |
+
|
419 |
+
attn_output = torch.bmm(attn_output_weights, v)
|
420 |
+
|
421 |
+
attn_output = (
|
422 |
+
attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
|
423 |
+
)
|
424 |
+
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
425 |
+
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
426 |
+
|
427 |
+
# optionally average attention weights over heads
|
428 |
+
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
|
429 |
+
if average_attn_weights:
|
430 |
+
attn_output_weights = attn_output_weights.mean(dim=1)
|
431 |
+
|
432 |
+
if not is_batched:
|
433 |
+
# squeeze the output if input was unbatched
|
434 |
+
attn_output = attn_output.squeeze(1)
|
435 |
+
attn_output_weights = attn_output_weights.squeeze(0)
|
436 |
+
return attn_output, attn_output_weights
|
437 |
+
else:
|
438 |
+
# attn_mask can be either (L,S) or (N*num_heads, L, S)
|
439 |
+
# if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
|
440 |
+
# in order to match the input for SDPA of (N, num_heads, L, S)
|
441 |
+
if attn_mask is not None:
|
442 |
+
if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
|
443 |
+
attn_mask = attn_mask.unsqueeze(0)
|
444 |
+
else:
|
445 |
+
attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
|
446 |
+
|
447 |
+
q = q.view(bsz, num_heads, tgt_len, head_dim)
|
448 |
+
k = k.view(bsz, num_heads, src_len, head_dim)
|
449 |
+
v = v.view(bsz, num_heads, src_len, head_dim)
|
450 |
+
|
451 |
+
attn_output = scaled_dot_product_attention(
|
452 |
+
q, k, v, attn_mask, dropout_p, is_causal
|
453 |
+
)
|
454 |
+
attn_output = (
|
455 |
+
attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
|
456 |
+
)
|
457 |
+
|
458 |
+
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
459 |
+
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
460 |
+
if not is_batched:
|
461 |
+
# squeeze the output if input was unbatched
|
462 |
+
attn_output = attn_output.squeeze(1)
|
463 |
+
return attn_output, None
|
AR/modules/scaling.py
ADDED
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
|
2 |
+
#
|
3 |
+
# See ../../../../LICENSE for clarification regarding multiple authors
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
import logging
|
17 |
+
import math
|
18 |
+
import random
|
19 |
+
from typing import Optional
|
20 |
+
from typing import Tuple
|
21 |
+
from typing import Union
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.nn as nn
|
25 |
+
from torch import Tensor
|
26 |
+
|
27 |
+
|
28 |
+
class DoubleSwishFunction(torch.autograd.Function):
|
29 |
+
"""
|
30 |
+
double_swish(x) = x * torch.sigmoid(x-1)
|
31 |
+
This is a definition, originally motivated by its close numerical
|
32 |
+
similarity to swish(swish(x)), where swish(x) = x * sigmoid(x).
|
33 |
+
|
34 |
+
Memory-efficient derivative computation:
|
35 |
+
double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1)
|
36 |
+
double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x).
|
37 |
+
Now, s'(x) = s(x) * (1-s(x)).
|
38 |
+
double_swish'(x) = x * s'(x) + s(x).
|
39 |
+
= x * s(x) * (1-s(x)) + s(x).
|
40 |
+
= double_swish(x) * (1-s(x)) + s(x)
|
41 |
+
... so we just need to remember s(x) but not x itself.
|
42 |
+
"""
|
43 |
+
|
44 |
+
@staticmethod
|
45 |
+
def forward(ctx, x: Tensor) -> Tensor:
|
46 |
+
requires_grad = x.requires_grad
|
47 |
+
x_dtype = x.dtype
|
48 |
+
if x.dtype == torch.float16:
|
49 |
+
x = x.to(torch.float32)
|
50 |
+
|
51 |
+
s = torch.sigmoid(x - 1.0)
|
52 |
+
y = x * s
|
53 |
+
|
54 |
+
if requires_grad:
|
55 |
+
deriv = y * (1 - s) + s
|
56 |
+
# notes on derivative of x * sigmoid(x - 1):
|
57 |
+
# https://www.wolframalpha.com/input?i=d%2Fdx+%28x+*+sigmoid%28x-1%29%29
|
58 |
+
# min \simeq -0.043638. Take floor as -0.043637 so it's a lower bund
|
59 |
+
# max \simeq 1.1990. Take ceil to be 1.2 so it's an upper bound.
|
60 |
+
# the combination of "+ torch.rand_like(deriv)" and casting to torch.uint8 (which
|
61 |
+
# floors), should be expectation-preserving.
|
62 |
+
floor = -0.043637
|
63 |
+
ceil = 1.2
|
64 |
+
d_scaled = (deriv - floor) * (255.0 / (ceil - floor)) + torch.rand_like(
|
65 |
+
deriv
|
66 |
+
)
|
67 |
+
if __name__ == "__main__":
|
68 |
+
# for self-testing only.
|
69 |
+
assert d_scaled.min() >= 0.0
|
70 |
+
assert d_scaled.max() < 256.0
|
71 |
+
d_int = d_scaled.to(torch.uint8)
|
72 |
+
ctx.save_for_backward(d_int)
|
73 |
+
if x.dtype == torch.float16 or torch.is_autocast_enabled():
|
74 |
+
y = y.to(torch.float16)
|
75 |
+
return y
|
76 |
+
|
77 |
+
@staticmethod
|
78 |
+
def backward(ctx, y_grad: Tensor) -> Tensor:
|
79 |
+
(d,) = ctx.saved_tensors
|
80 |
+
# the same constants as used in forward pass.
|
81 |
+
floor = -0.043637
|
82 |
+
ceil = 1.2
|
83 |
+
d = d * ((ceil - floor) / 255.0) + floor
|
84 |
+
return y_grad * d
|
85 |
+
|
86 |
+
|
87 |
+
class DoubleSwish(torch.nn.Module):
|
88 |
+
def forward(self, x: Tensor) -> Tensor:
|
89 |
+
"""Return double-swish activation function which is an approximation to Swish(Swish(x)),
|
90 |
+
that we approximate closely with x * sigmoid(x-1).
|
91 |
+
"""
|
92 |
+
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
93 |
+
return x * torch.sigmoid(x - 1.0)
|
94 |
+
return DoubleSwishFunction.apply(x)
|
95 |
+
|
96 |
+
|
97 |
+
class ActivationBalancerFunction(torch.autograd.Function):
|
98 |
+
@staticmethod
|
99 |
+
def forward(
|
100 |
+
ctx,
|
101 |
+
x: Tensor,
|
102 |
+
scale_factor: Tensor,
|
103 |
+
sign_factor: Optional[Tensor],
|
104 |
+
channel_dim: int,
|
105 |
+
) -> Tensor:
|
106 |
+
if channel_dim < 0:
|
107 |
+
channel_dim += x.ndim
|
108 |
+
ctx.channel_dim = channel_dim
|
109 |
+
xgt0 = x > 0
|
110 |
+
if sign_factor is None:
|
111 |
+
ctx.save_for_backward(xgt0, scale_factor)
|
112 |
+
else:
|
113 |
+
ctx.save_for_backward(xgt0, scale_factor, sign_factor)
|
114 |
+
return x
|
115 |
+
|
116 |
+
@staticmethod
|
117 |
+
def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None]:
|
118 |
+
if len(ctx.saved_tensors) == 3:
|
119 |
+
xgt0, scale_factor, sign_factor = ctx.saved_tensors
|
120 |
+
for _ in range(ctx.channel_dim, x_grad.ndim - 1):
|
121 |
+
scale_factor = scale_factor.unsqueeze(-1)
|
122 |
+
sign_factor = sign_factor.unsqueeze(-1)
|
123 |
+
factor = sign_factor + scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
|
124 |
+
else:
|
125 |
+
xgt0, scale_factor = ctx.saved_tensors
|
126 |
+
for _ in range(ctx.channel_dim, x_grad.ndim - 1):
|
127 |
+
scale_factor = scale_factor.unsqueeze(-1)
|
128 |
+
factor = scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
|
129 |
+
neg_delta_grad = x_grad.abs() * factor
|
130 |
+
return (
|
131 |
+
x_grad - neg_delta_grad,
|
132 |
+
None,
|
133 |
+
None,
|
134 |
+
None,
|
135 |
+
)
|
136 |
+
|
137 |
+
|
138 |
+
def _compute_scale_factor(
|
139 |
+
x: Tensor,
|
140 |
+
channel_dim: int,
|
141 |
+
min_abs: float,
|
142 |
+
max_abs: float,
|
143 |
+
gain_factor: float,
|
144 |
+
max_factor: float,
|
145 |
+
) -> Tensor:
|
146 |
+
if channel_dim < 0:
|
147 |
+
channel_dim += x.ndim
|
148 |
+
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
|
149 |
+
x_abs_mean = torch.mean(x.abs(), dim=sum_dims).to(torch.float32)
|
150 |
+
|
151 |
+
if min_abs == 0.0:
|
152 |
+
below_threshold = 0.0
|
153 |
+
else:
|
154 |
+
# below_threshold is 0 if x_abs_mean > min_abs, can be at most max_factor if
|
155 |
+
# x_abs)_mean , min_abs.
|
156 |
+
below_threshold = ((min_abs - x_abs_mean) * (gain_factor / min_abs)).clamp(
|
157 |
+
min=0, max=max_factor
|
158 |
+
)
|
159 |
+
|
160 |
+
above_threshold = ((x_abs_mean - max_abs) * (gain_factor / max_abs)).clamp(
|
161 |
+
min=0, max=max_factor
|
162 |
+
)
|
163 |
+
|
164 |
+
return below_threshold - above_threshold
|
165 |
+
|
166 |
+
|
167 |
+
def _compute_sign_factor(
|
168 |
+
x: Tensor,
|
169 |
+
channel_dim: int,
|
170 |
+
min_positive: float,
|
171 |
+
max_positive: float,
|
172 |
+
gain_factor: float,
|
173 |
+
max_factor: float,
|
174 |
+
) -> Tensor:
|
175 |
+
if channel_dim < 0:
|
176 |
+
channel_dim += x.ndim
|
177 |
+
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
|
178 |
+
proportion_positive = torch.mean((x > 0).to(torch.float32), dim=sum_dims)
|
179 |
+
if min_positive == 0.0:
|
180 |
+
factor1 = 0.0
|
181 |
+
else:
|
182 |
+
# 0 if proportion_positive >= min_positive, else can be
|
183 |
+
# as large as max_factor.
|
184 |
+
factor1 = (
|
185 |
+
(min_positive - proportion_positive) * (gain_factor / min_positive)
|
186 |
+
).clamp_(min=0, max=max_factor)
|
187 |
+
|
188 |
+
if max_positive == 1.0:
|
189 |
+
factor2 = 0.0
|
190 |
+
else:
|
191 |
+
# 0 if self.proportion_positive <= max_positive, else can be
|
192 |
+
# as large as -max_factor.
|
193 |
+
factor2 = (
|
194 |
+
(proportion_positive - max_positive) * (gain_factor / (1.0 - max_positive))
|
195 |
+
).clamp_(min=0, max=max_factor)
|
196 |
+
sign_factor = factor1 - factor2
|
197 |
+
# require min_positive != 0 or max_positive != 1:
|
198 |
+
assert not isinstance(sign_factor, float)
|
199 |
+
return sign_factor
|
200 |
+
|
201 |
+
|
202 |
+
class ActivationBalancer(torch.nn.Module):
|
203 |
+
"""
|
204 |
+
Modifies the backpropped derivatives of a function to try to encourage, for
|
205 |
+
each channel, that it is positive at least a proportion `threshold` of the
|
206 |
+
time. It does this by multiplying negative derivative values by up to
|
207 |
+
(1+max_factor), and positive derivative values by up to (1-max_factor),
|
208 |
+
interpolated from 1 at the threshold to those extremal values when none
|
209 |
+
of the inputs are positive.
|
210 |
+
|
211 |
+
Args:
|
212 |
+
num_channels: the number of channels
|
213 |
+
channel_dim: the dimension/axis corresponding to the channel, e.g.
|
214 |
+
-1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative.
|
215 |
+
min_positive: the minimum, per channel, of the proportion of the time
|
216 |
+
that (x > 0), below which we start to modify the derivatives.
|
217 |
+
max_positive: the maximum, per channel, of the proportion of the time
|
218 |
+
that (x > 0), above which we start to modify the derivatives.
|
219 |
+
max_factor: the maximum factor by which we modify the derivatives for
|
220 |
+
either the sign constraint or the magnitude constraint;
|
221 |
+
e.g. with max_factor=0.02, the the derivatives would be multiplied by
|
222 |
+
values in the range [0.98..1.02].
|
223 |
+
sign_gain_factor: determines the 'gain' with which we increase the
|
224 |
+
change in gradient once the constraints on min_positive and max_positive
|
225 |
+
are violated.
|
226 |
+
scale_gain_factor: determines the 'gain' with which we increase the
|
227 |
+
change in gradient once the constraints on min_abs and max_abs
|
228 |
+
are violated.
|
229 |
+
min_abs: the minimum average-absolute-value difference from the mean
|
230 |
+
value per channel, which we allow, before we start to modify
|
231 |
+
the derivatives to prevent this.
|
232 |
+
max_abs: the maximum average-absolute-value difference from the mean
|
233 |
+
value per channel, which we allow, before we start to modify
|
234 |
+
the derivatives to prevent this.
|
235 |
+
min_prob: determines the minimum probability with which we modify the
|
236 |
+
gradients for the {min,max}_positive and {min,max}_abs constraints,
|
237 |
+
on each forward(). This is done randomly to prevent all layers
|
238 |
+
from doing it at the same time. Early in training we may use
|
239 |
+
higher probabilities than this; it will decay to this value.
|
240 |
+
"""
|
241 |
+
|
242 |
+
def __init__(
|
243 |
+
self,
|
244 |
+
num_channels: int,
|
245 |
+
channel_dim: int,
|
246 |
+
min_positive: float = 0.05,
|
247 |
+
max_positive: float = 0.95,
|
248 |
+
max_factor: float = 0.04,
|
249 |
+
sign_gain_factor: float = 0.01,
|
250 |
+
scale_gain_factor: float = 0.02,
|
251 |
+
min_abs: float = 0.2,
|
252 |
+
max_abs: float = 100.0,
|
253 |
+
min_prob: float = 0.1,
|
254 |
+
):
|
255 |
+
super(ActivationBalancer, self).__init__()
|
256 |
+
self.num_channels = num_channels
|
257 |
+
self.channel_dim = channel_dim
|
258 |
+
self.min_positive = min_positive
|
259 |
+
self.max_positive = max_positive
|
260 |
+
self.max_factor = max_factor
|
261 |
+
self.min_abs = min_abs
|
262 |
+
self.max_abs = max_abs
|
263 |
+
self.min_prob = min_prob
|
264 |
+
self.sign_gain_factor = sign_gain_factor
|
265 |
+
self.scale_gain_factor = scale_gain_factor
|
266 |
+
|
267 |
+
# count measures how many times the forward() function has been called.
|
268 |
+
# We occasionally sync this to a tensor called `count`, that exists to
|
269 |
+
# make sure it is synced to disk when we load and save the model.
|
270 |
+
self.cpu_count = 0
|
271 |
+
self.register_buffer("count", torch.tensor(0, dtype=torch.int64))
|
272 |
+
|
273 |
+
def forward(self, x: Tensor) -> Tensor:
|
274 |
+
if torch.jit.is_scripting() or not x.requires_grad or torch.jit.is_tracing():
|
275 |
+
return _no_op(x)
|
276 |
+
|
277 |
+
count = self.cpu_count
|
278 |
+
self.cpu_count += 1
|
279 |
+
|
280 |
+
if random.random() < 0.01:
|
281 |
+
# Occasionally sync self.cpu_count with self.count.
|
282 |
+
# count affects the decay of 'prob'. don't do this on every iter,
|
283 |
+
# because syncing with the GPU is slow.
|
284 |
+
self.cpu_count = max(self.cpu_count, self.count.item())
|
285 |
+
self.count.fill_(self.cpu_count)
|
286 |
+
|
287 |
+
# the prob of doing some work exponentially decreases from 0.5 till it hits
|
288 |
+
# a floor at min_prob (==0.1, by default)
|
289 |
+
prob = max(self.min_prob, 0.5 ** (1 + (count / 4000.0)))
|
290 |
+
|
291 |
+
if random.random() < prob:
|
292 |
+
sign_gain_factor = 0.5
|
293 |
+
if self.min_positive != 0.0 or self.max_positive != 1.0:
|
294 |
+
sign_factor = _compute_sign_factor(
|
295 |
+
x,
|
296 |
+
self.channel_dim,
|
297 |
+
self.min_positive,
|
298 |
+
self.max_positive,
|
299 |
+
gain_factor=self.sign_gain_factor / prob,
|
300 |
+
max_factor=self.max_factor,
|
301 |
+
)
|
302 |
+
else:
|
303 |
+
sign_factor = None
|
304 |
+
|
305 |
+
scale_factor = _compute_scale_factor(
|
306 |
+
x.detach(),
|
307 |
+
self.channel_dim,
|
308 |
+
min_abs=self.min_abs,
|
309 |
+
max_abs=self.max_abs,
|
310 |
+
gain_factor=self.scale_gain_factor / prob,
|
311 |
+
max_factor=self.max_factor,
|
312 |
+
)
|
313 |
+
return ActivationBalancerFunction.apply(
|
314 |
+
x,
|
315 |
+
scale_factor,
|
316 |
+
sign_factor,
|
317 |
+
self.channel_dim,
|
318 |
+
)
|
319 |
+
else:
|
320 |
+
return _no_op(x)
|
321 |
+
|
322 |
+
|
323 |
+
def BalancedDoubleSwish(
|
324 |
+
d_model, channel_dim=-1, max_abs=10.0, min_prob=0.25
|
325 |
+
) -> nn.Sequential:
|
326 |
+
"""
|
327 |
+
ActivationBalancer -> DoubleSwish
|
328 |
+
"""
|
329 |
+
balancer = ActivationBalancer(
|
330 |
+
d_model, channel_dim=channel_dim, max_abs=max_abs, min_prob=min_prob
|
331 |
+
)
|
332 |
+
return nn.Sequential(
|
333 |
+
balancer,
|
334 |
+
DoubleSwish(),
|
335 |
+
)
|
AR/modules/transformer.py
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py
|
2 |
+
import copy
|
3 |
+
import numbers
|
4 |
+
from functools import partial
|
5 |
+
from typing import Any
|
6 |
+
from typing import Callable
|
7 |
+
from typing import List
|
8 |
+
from typing import Optional
|
9 |
+
from typing import Tuple
|
10 |
+
from typing import Union
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from AR.modules.activation import MultiheadAttention
|
14 |
+
from AR.modules.scaling import BalancedDoubleSwish
|
15 |
+
from torch import nn
|
16 |
+
from torch import Tensor
|
17 |
+
from torch.nn import functional as F
|
18 |
+
|
19 |
+
_shape_t = Union[int, List[int], torch.Size]
|
20 |
+
|
21 |
+
|
22 |
+
class LayerNorm(nn.Module):
|
23 |
+
__constants__ = ["normalized_shape", "eps", "elementwise_affine"]
|
24 |
+
normalized_shape: Tuple[int, ...]
|
25 |
+
eps: float
|
26 |
+
elementwise_affine: bool
|
27 |
+
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
normalized_shape: _shape_t,
|
31 |
+
eps: float = 1e-5,
|
32 |
+
elementwise_affine: bool = True,
|
33 |
+
device=None,
|
34 |
+
dtype=None,
|
35 |
+
) -> None:
|
36 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
37 |
+
super(LayerNorm, self).__init__()
|
38 |
+
if isinstance(normalized_shape, numbers.Integral):
|
39 |
+
# mypy error: incompatible types in assignment
|
40 |
+
normalized_shape = (normalized_shape,) # type: ignore[assignment]
|
41 |
+
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
|
42 |
+
self.eps = eps
|
43 |
+
self.elementwise_affine = elementwise_affine
|
44 |
+
if self.elementwise_affine:
|
45 |
+
self.weight = nn.Parameter(
|
46 |
+
torch.empty(self.normalized_shape, **factory_kwargs)
|
47 |
+
)
|
48 |
+
self.bias = nn.Parameter(
|
49 |
+
torch.empty(self.normalized_shape, **factory_kwargs)
|
50 |
+
)
|
51 |
+
else:
|
52 |
+
self.register_parameter("weight", None)
|
53 |
+
self.register_parameter("bias", None)
|
54 |
+
|
55 |
+
self.reset_parameters()
|
56 |
+
|
57 |
+
def reset_parameters(self) -> None:
|
58 |
+
if self.elementwise_affine:
|
59 |
+
nn.init.ones_(self.weight)
|
60 |
+
nn.init.zeros_(self.bias)
|
61 |
+
|
62 |
+
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
63 |
+
if isinstance(input, tuple):
|
64 |
+
input, embedding = input
|
65 |
+
return (
|
66 |
+
F.layer_norm(
|
67 |
+
input,
|
68 |
+
self.normalized_shape,
|
69 |
+
self.weight,
|
70 |
+
self.bias,
|
71 |
+
self.eps,
|
72 |
+
),
|
73 |
+
embedding,
|
74 |
+
)
|
75 |
+
|
76 |
+
assert embedding is None
|
77 |
+
return F.layer_norm(
|
78 |
+
input, self.normalized_shape, self.weight, self.bias, self.eps
|
79 |
+
)
|
80 |
+
|
81 |
+
def extra_repr(self) -> str:
|
82 |
+
return (
|
83 |
+
"{normalized_shape}, eps={eps}, "
|
84 |
+
"elementwise_affine={elementwise_affine}".format(**self.__dict__)
|
85 |
+
)
|
86 |
+
|
87 |
+
|
88 |
+
class IdentityNorm(nn.Module):
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
d_model: int,
|
92 |
+
eps: float = 1e-5,
|
93 |
+
device=None,
|
94 |
+
dtype=None,
|
95 |
+
) -> None:
|
96 |
+
super(IdentityNorm, self).__init__()
|
97 |
+
|
98 |
+
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
99 |
+
if isinstance(input, tuple):
|
100 |
+
return input
|
101 |
+
|
102 |
+
assert embedding is None
|
103 |
+
return input
|
104 |
+
|
105 |
+
|
106 |
+
class TransformerEncoder(nn.Module):
|
107 |
+
r"""TransformerEncoder is a stack of N encoder layers. Users can build the
|
108 |
+
BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
|
109 |
+
|
110 |
+
Args:
|
111 |
+
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
|
112 |
+
num_layers: the number of sub-encoder-layers in the encoder (required).
|
113 |
+
norm: the layer normalization component (optional).
|
114 |
+
enable_nested_tensor: if True, input will automatically convert to nested tensor
|
115 |
+
(and convert back on output). This will improve the overall performance of
|
116 |
+
TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
|
117 |
+
|
118 |
+
Examples::
|
119 |
+
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
|
120 |
+
>>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
|
121 |
+
>>> src = torch.rand(10, 32, 512)
|
122 |
+
>>> out = transformer_encoder(src)
|
123 |
+
"""
|
124 |
+
__constants__ = ["norm"]
|
125 |
+
|
126 |
+
def __init__(self, encoder_layer, num_layers, norm=None):
|
127 |
+
super(TransformerEncoder, self).__init__()
|
128 |
+
self.layers = _get_clones(encoder_layer, num_layers)
|
129 |
+
self.num_layers = num_layers
|
130 |
+
self.norm = norm
|
131 |
+
|
132 |
+
def forward(
|
133 |
+
self,
|
134 |
+
src: Tensor,
|
135 |
+
mask: Optional[Tensor] = None,
|
136 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
137 |
+
return_layer_states: bool = False,
|
138 |
+
cache=None,
|
139 |
+
) -> Tensor:
|
140 |
+
r"""Pass the input through the encoder layers in turn.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
src: the sequence to the encoder (required).
|
144 |
+
mask: the mask for the src sequence (optional).
|
145 |
+
src_key_padding_mask: the mask for the src keys per batch (optional).
|
146 |
+
return_layer_states: return layers' state (optional).
|
147 |
+
|
148 |
+
Shape:
|
149 |
+
see the docs in Transformer class.
|
150 |
+
"""
|
151 |
+
if return_layer_states:
|
152 |
+
layer_states = [] # layers' output
|
153 |
+
output = src
|
154 |
+
for mod in self.layers:
|
155 |
+
output = mod(
|
156 |
+
output,
|
157 |
+
src_mask=mask,
|
158 |
+
src_key_padding_mask=src_key_padding_mask,
|
159 |
+
cache=cache,
|
160 |
+
)
|
161 |
+
layer_states.append(output[0])
|
162 |
+
|
163 |
+
if self.norm is not None:
|
164 |
+
output = self.norm(output)
|
165 |
+
|
166 |
+
return layer_states, output
|
167 |
+
|
168 |
+
output = src
|
169 |
+
for mod in self.layers:
|
170 |
+
output = mod(
|
171 |
+
output,
|
172 |
+
src_mask=mask,
|
173 |
+
src_key_padding_mask=src_key_padding_mask,
|
174 |
+
cache=cache,
|
175 |
+
)
|
176 |
+
|
177 |
+
if self.norm is not None:
|
178 |
+
output = self.norm(output)
|
179 |
+
|
180 |
+
return output
|
181 |
+
|
182 |
+
|
183 |
+
class TransformerEncoderLayer(nn.Module):
|
184 |
+
__constants__ = ["batch_first", "norm_first"]
|
185 |
+
|
186 |
+
def __init__(
|
187 |
+
self,
|
188 |
+
d_model: int,
|
189 |
+
nhead: int,
|
190 |
+
dim_feedforward: int = 2048,
|
191 |
+
dropout: float = 0.1,
|
192 |
+
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
|
193 |
+
batch_first: bool = False,
|
194 |
+
norm_first: bool = False,
|
195 |
+
device=None,
|
196 |
+
dtype=None,
|
197 |
+
linear1_self_attention_cls: nn.Module = nn.Linear,
|
198 |
+
linear2_self_attention_cls: nn.Module = nn.Linear,
|
199 |
+
linear1_feedforward_cls: nn.Module = nn.Linear,
|
200 |
+
linear2_feedforward_cls: nn.Module = nn.Linear,
|
201 |
+
layer_norm_cls: nn.Module = LayerNorm,
|
202 |
+
layer_norm_eps: float = 1e-5,
|
203 |
+
adaptive_layer_norm=False,
|
204 |
+
) -> None:
|
205 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
206 |
+
super(TransformerEncoderLayer, self).__init__()
|
207 |
+
# print(233333333333,d_model,nhead)
|
208 |
+
# import os
|
209 |
+
# os._exit(2333333)
|
210 |
+
self.self_attn = MultiheadAttention(
|
211 |
+
d_model, # 512 16
|
212 |
+
nhead,
|
213 |
+
dropout=dropout,
|
214 |
+
batch_first=batch_first,
|
215 |
+
linear1_cls=linear1_self_attention_cls,
|
216 |
+
linear2_cls=linear2_self_attention_cls,
|
217 |
+
**factory_kwargs,
|
218 |
+
)
|
219 |
+
|
220 |
+
# Implementation of Feedforward model
|
221 |
+
self.linear1 = linear1_feedforward_cls(
|
222 |
+
d_model, dim_feedforward, **factory_kwargs
|
223 |
+
)
|
224 |
+
self.dropout = nn.Dropout(dropout)
|
225 |
+
self.linear2 = linear2_feedforward_cls(
|
226 |
+
dim_feedforward, d_model, **factory_kwargs
|
227 |
+
)
|
228 |
+
|
229 |
+
self.norm_first = norm_first
|
230 |
+
self.dropout1 = nn.Dropout(dropout)
|
231 |
+
self.dropout2 = nn.Dropout(dropout)
|
232 |
+
|
233 |
+
# Legacy string support for activation function.
|
234 |
+
if isinstance(activation, str):
|
235 |
+
activation = _get_activation_fn(activation)
|
236 |
+
elif isinstance(activation, partial):
|
237 |
+
activation = activation(d_model)
|
238 |
+
elif activation == BalancedDoubleSwish:
|
239 |
+
activation = BalancedDoubleSwish(d_model)
|
240 |
+
|
241 |
+
# # We can't test self.activation in forward() in TorchScript,
|
242 |
+
# # so stash some information about it instead.
|
243 |
+
# if activation is F.relu or isinstance(activation, torch.nn.ReLU):
|
244 |
+
# self.activation_relu_or_gelu = 1
|
245 |
+
# elif activation is F.gelu or isinstance(activation, torch.nn.GELU):
|
246 |
+
# self.activation_relu_or_gelu = 2
|
247 |
+
# else:
|
248 |
+
# self.activation_relu_or_gelu = 0
|
249 |
+
self.activation = activation
|
250 |
+
|
251 |
+
norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
252 |
+
if layer_norm_cls == IdentityNorm:
|
253 |
+
norm2 = BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
254 |
+
else:
|
255 |
+
norm2 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
256 |
+
|
257 |
+
if adaptive_layer_norm:
|
258 |
+
self.norm1 = AdaptiveLayerNorm(d_model, norm1)
|
259 |
+
self.norm2 = AdaptiveLayerNorm(d_model, norm2)
|
260 |
+
else:
|
261 |
+
self.norm1 = norm1
|
262 |
+
self.norm2 = norm2
|
263 |
+
|
264 |
+
def __setstate__(self, state):
|
265 |
+
super(TransformerEncoderLayer, self).__setstate__(state)
|
266 |
+
if not hasattr(self, "activation"):
|
267 |
+
self.activation = F.relu
|
268 |
+
|
269 |
+
def forward(
|
270 |
+
self,
|
271 |
+
src: Tensor,
|
272 |
+
src_mask: Optional[Tensor] = None,
|
273 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
274 |
+
cache=None,
|
275 |
+
) -> Tensor:
|
276 |
+
r"""Pass the input through the encoder layer.
|
277 |
+
|
278 |
+
Args:
|
279 |
+
src: the sequence to the encoder layer (required).
|
280 |
+
src_mask: the mask for the src sequence (optional).
|
281 |
+
src_key_padding_mask: the mask for the src keys per batch (optional).
|
282 |
+
|
283 |
+
Shape:
|
284 |
+
see the docs in Transformer class.
|
285 |
+
"""
|
286 |
+
x, stage_embedding = src, None
|
287 |
+
is_src_tuple = False
|
288 |
+
if isinstance(src, tuple):
|
289 |
+
x, stage_embedding = src
|
290 |
+
is_src_tuple = True
|
291 |
+
|
292 |
+
if src_key_padding_mask is not None:
|
293 |
+
_skpm_dtype = src_key_padding_mask.dtype
|
294 |
+
if _skpm_dtype != torch.bool and not torch.is_floating_point(
|
295 |
+
src_key_padding_mask
|
296 |
+
):
|
297 |
+
raise AssertionError(
|
298 |
+
"only bool and floating types of key_padding_mask are supported"
|
299 |
+
)
|
300 |
+
|
301 |
+
if self.norm_first:
|
302 |
+
x = x + self._sa_block(
|
303 |
+
self.norm1(x, stage_embedding),
|
304 |
+
src_mask,
|
305 |
+
src_key_padding_mask,
|
306 |
+
cache=cache,
|
307 |
+
)
|
308 |
+
x = x + self._ff_block(self.norm2(x, stage_embedding))
|
309 |
+
else:
|
310 |
+
x = self.norm1(
|
311 |
+
x + self._sa_block(x, src_mask, src_key_padding_mask, cache=cache),
|
312 |
+
stage_embedding,
|
313 |
+
)
|
314 |
+
x = self.norm2(x + self._ff_block(x), stage_embedding)
|
315 |
+
|
316 |
+
if is_src_tuple:
|
317 |
+
return (x, stage_embedding)
|
318 |
+
return x
|
319 |
+
|
320 |
+
# self-attention block
|
321 |
+
def _sa_block(
|
322 |
+
self,
|
323 |
+
x: Tensor,
|
324 |
+
attn_mask: Optional[Tensor],
|
325 |
+
key_padding_mask: Optional[Tensor],
|
326 |
+
cache=None,
|
327 |
+
) -> Tensor:
|
328 |
+
# print(x.shape,attn_mask.shape,key_padding_mask)
|
329 |
+
# torch.Size([1, 188, 512]) torch.Size([188, 188]) None
|
330 |
+
# import os
|
331 |
+
# os._exit(23333)
|
332 |
+
x = self.self_attn(
|
333 |
+
x,
|
334 |
+
x,
|
335 |
+
x,
|
336 |
+
attn_mask=attn_mask,
|
337 |
+
key_padding_mask=key_padding_mask,
|
338 |
+
need_weights=False,
|
339 |
+
cache=cache,
|
340 |
+
)[0]
|
341 |
+
return self.dropout1(x)
|
342 |
+
|
343 |
+
# feed forward block
|
344 |
+
def _ff_block(self, x: Tensor) -> Tensor:
|
345 |
+
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
|
346 |
+
return self.dropout2(x)
|
347 |
+
|
348 |
+
|
349 |
+
class AdaptiveLayerNorm(nn.Module):
|
350 |
+
r"""Adaptive Layer Normalization"""
|
351 |
+
|
352 |
+
def __init__(self, d_model, norm) -> None:
|
353 |
+
super(AdaptiveLayerNorm, self).__init__()
|
354 |
+
self.project_layer = nn.Linear(d_model, 2 * d_model)
|
355 |
+
self.norm = norm
|
356 |
+
self.d_model = d_model
|
357 |
+
self.eps = self.norm.eps
|
358 |
+
|
359 |
+
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
|
360 |
+
if isinstance(input, tuple):
|
361 |
+
input, embedding = input
|
362 |
+
weight, bias = torch.split(
|
363 |
+
self.project_layer(embedding),
|
364 |
+
split_size_or_sections=self.d_model,
|
365 |
+
dim=-1,
|
366 |
+
)
|
367 |
+
return (weight * self.norm(input) + bias, embedding)
|
368 |
+
|
369 |
+
weight, bias = torch.split(
|
370 |
+
self.project_layer(embedding),
|
371 |
+
split_size_or_sections=self.d_model,
|
372 |
+
dim=-1,
|
373 |
+
)
|
374 |
+
return weight * self.norm(input) + bias
|
375 |
+
|
376 |
+
|
377 |
+
def _get_clones(module, N):
|
378 |
+
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
AR/text_processing/__init__.py
ADDED
File without changes
|
AR/text_processing/phonemizer.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/text_processing/phonemizer.py
|
2 |
+
import itertools
|
3 |
+
import re
|
4 |
+
from typing import Dict
|
5 |
+
from typing import List
|
6 |
+
|
7 |
+
import regex
|
8 |
+
from gruut import sentences
|
9 |
+
from gruut.const import Sentence
|
10 |
+
from gruut.const import Word
|
11 |
+
from AR.text_processing.symbols import SYMBOL_TO_ID
|
12 |
+
|
13 |
+
|
14 |
+
class GruutPhonemizer:
|
15 |
+
def __init__(self, language: str):
|
16 |
+
self._phonemizer = sentences
|
17 |
+
self.lang = language
|
18 |
+
self.symbol_to_id = SYMBOL_TO_ID
|
19 |
+
self._special_cases_dict: Dict[str] = {
|
20 |
+
r"\.\.\.": "... ",
|
21 |
+
";": "; ",
|
22 |
+
":": ": ",
|
23 |
+
",": ", ",
|
24 |
+
r"\.": ". ",
|
25 |
+
"!": "! ",
|
26 |
+
r"\?": "? ",
|
27 |
+
"—": "—",
|
28 |
+
"…": "… ",
|
29 |
+
"«": "«",
|
30 |
+
"»": "»",
|
31 |
+
}
|
32 |
+
self._punctuation_regexp: str = (
|
33 |
+
rf"([{''.join(self._special_cases_dict.keys())}])"
|
34 |
+
)
|
35 |
+
|
36 |
+
def _normalize_punctuation(self, text: str) -> str:
|
37 |
+
text = regex.sub(rf"\pZ+{self._punctuation_regexp}", r"\1", text)
|
38 |
+
text = regex.sub(rf"{self._punctuation_regexp}(\pL)", r"\1 \2", text)
|
39 |
+
text = regex.sub(r"\pZ+", r" ", text)
|
40 |
+
return text.strip()
|
41 |
+
|
42 |
+
def _convert_punctuation(self, word: Word) -> str:
|
43 |
+
if not word.phonemes:
|
44 |
+
return ""
|
45 |
+
if word.phonemes[0] in ["‖", "|"]:
|
46 |
+
return word.text.strip()
|
47 |
+
|
48 |
+
phonemes = "".join(word.phonemes)
|
49 |
+
# remove modifier characters ˈˌː with regex
|
50 |
+
phonemes = re.sub(r"[ˈˌː͡]", "", phonemes)
|
51 |
+
return phonemes.strip()
|
52 |
+
|
53 |
+
def phonemize(self, text: str, espeak: bool = False) -> str:
|
54 |
+
text_to_phonemize: str = self._normalize_punctuation(text)
|
55 |
+
sents: List[Sentence] = [
|
56 |
+
sent
|
57 |
+
for sent in self._phonemizer(text_to_phonemize, lang="en-us", espeak=espeak)
|
58 |
+
]
|
59 |
+
words: List[str] = [
|
60 |
+
self._convert_punctuation(word) for word in itertools.chain(*sents)
|
61 |
+
]
|
62 |
+
return " ".join(words)
|
63 |
+
|
64 |
+
def transform(self, phonemes):
|
65 |
+
# convert phonemes to ids
|
66 |
+
# dictionary is in symbols.py
|
67 |
+
return [self.symbol_to_id[p] for p in phonemes if p in self.symbol_to_id.keys()]
|
68 |
+
|
69 |
+
|
70 |
+
if __name__ == "__main__":
|
71 |
+
phonemizer = GruutPhonemizer("en-us")
|
72 |
+
# text -> IPA
|
73 |
+
phonemes = phonemizer.phonemize("Hello, wor-ld ?")
|
74 |
+
print("phonemes:", phonemes)
|
75 |
+
print("len(phonemes):", len(phonemes))
|
76 |
+
phoneme_ids = phonemizer.transform(phonemes)
|
77 |
+
print("phoneme_ids:", phoneme_ids)
|
78 |
+
print("len(phoneme_ids):", len(phoneme_ids))
|
AR/text_processing/symbols.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/text_processing/symbols.py
|
2 |
+
PAD = "_"
|
3 |
+
PUNCTUATION = ';:,.!?¡¿—…"«»“” '
|
4 |
+
LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
|
5 |
+
IPA_LETTERS = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
6 |
+
SYMBOLS = [PAD] + list(PUNCTUATION) + list(LETTERS) + list(IPA_LETTERS)
|
7 |
+
SPACE_ID = SYMBOLS.index(" ")
|
8 |
+
SYMBOL_TO_ID = {s: i for i, s in enumerate(SYMBOLS)}
|
9 |
+
ID_TO_SYMBOL = {i: s for i, s in enumerate(SYMBOLS)}
|
AR/utils/__init__.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
|
4 |
+
def str2bool(str):
|
5 |
+
return True if str.lower() == 'true' else False
|
6 |
+
|
7 |
+
|
8 |
+
def get_newest_ckpt(string_list):
|
9 |
+
# 定义一个正则表达式模式,用于匹配字符串中的数字
|
10 |
+
pattern = r'epoch=(\d+)-step=(\d+)\.ckpt'
|
11 |
+
|
12 |
+
# 使用正则表达式提取每个字符串中的数字信息,并创建一个包含元组的列表
|
13 |
+
extracted_info = []
|
14 |
+
for string in string_list:
|
15 |
+
match = re.match(pattern, string)
|
16 |
+
if match:
|
17 |
+
epoch = int(match.group(1))
|
18 |
+
step = int(match.group(2))
|
19 |
+
extracted_info.append((epoch, step, string))
|
20 |
+
# 按照 epoch 后面的数字和 step 后面的数字进行排序
|
21 |
+
sorted_info = sorted(
|
22 |
+
extracted_info, key=lambda x: (x[0], x[1]), reverse=True)
|
23 |
+
# 获取最新的 ckpt 文件名
|
24 |
+
newest_ckpt = sorted_info[0][2]
|
25 |
+
return newest_ckpt
|
26 |
+
|
27 |
+
|
28 |
+
# 文本存在且不为空时 return True
|
29 |
+
def check_txt_file(file_path):
|
30 |
+
try:
|
31 |
+
with open(file_path, 'r') as file:
|
32 |
+
text = file.readline().strip()
|
33 |
+
assert text.strip() != ''
|
34 |
+
return text
|
35 |
+
except Exception:
|
36 |
+
return False
|
37 |
+
return False
|
AR/utils/initialize.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""Initialize modules for espnet2 neural networks."""
|
3 |
+
import torch
|
4 |
+
from typeguard import check_argument_types
|
5 |
+
|
6 |
+
|
7 |
+
def initialize(model: torch.nn.Module, init: str):
|
8 |
+
"""Initialize weights of a neural network module.
|
9 |
+
|
10 |
+
Parameters are initialized using the given method or distribution.
|
11 |
+
|
12 |
+
Custom initialization routines can be implemented into submodules
|
13 |
+
as function `espnet_initialization_fn` within the custom module.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
model: Target.
|
17 |
+
init: Method of initialization.
|
18 |
+
"""
|
19 |
+
assert check_argument_types()
|
20 |
+
print("init with", init)
|
21 |
+
|
22 |
+
# weight init
|
23 |
+
for p in model.parameters():
|
24 |
+
if p.dim() > 1:
|
25 |
+
if init == "xavier_uniform":
|
26 |
+
torch.nn.init.xavier_uniform_(p.data)
|
27 |
+
elif init == "xavier_normal":
|
28 |
+
torch.nn.init.xavier_normal_(p.data)
|
29 |
+
elif init == "kaiming_uniform":
|
30 |
+
torch.nn.init.kaiming_uniform_(p.data, nonlinearity="relu")
|
31 |
+
elif init == "kaiming_normal":
|
32 |
+
torch.nn.init.kaiming_normal_(p.data, nonlinearity="relu")
|
33 |
+
else:
|
34 |
+
raise ValueError("Unknown initialization: " + init)
|
35 |
+
# bias init
|
36 |
+
for name, p in model.named_parameters():
|
37 |
+
if ".bias" in name and p.dim() == 1:
|
38 |
+
p.data.zero_()
|
AR/utils/io.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import yaml
|
5 |
+
|
6 |
+
|
7 |
+
def load_yaml_config(path):
|
8 |
+
with open(path) as f:
|
9 |
+
config = yaml.full_load(f)
|
10 |
+
return config
|
11 |
+
|
12 |
+
|
13 |
+
def save_config_to_yaml(config, path):
|
14 |
+
assert path.endswith(".yaml")
|
15 |
+
with open(path, "w") as f:
|
16 |
+
f.write(yaml.dump(config))
|
17 |
+
f.close()
|
18 |
+
|
19 |
+
|
20 |
+
def write_args(args, path):
|
21 |
+
args_dict = dict(
|
22 |
+
(name, getattr(args, name)) for name in dir(args) if not name.startswith("_")
|
23 |
+
)
|
24 |
+
with open(path, "a") as args_file:
|
25 |
+
args_file.write("==> torch version: {}\n".format(torch.__version__))
|
26 |
+
args_file.write(
|
27 |
+
"==> cudnn version: {}\n".format(torch.backends.cudnn.version())
|
28 |
+
)
|
29 |
+
args_file.write("==> Cmd:\n")
|
30 |
+
args_file.write(str(sys.argv))
|
31 |
+
args_file.write("\n==> args:\n")
|
32 |
+
for k, v in sorted(args_dict.items()):
|
33 |
+
args_file.write(" %s: %s\n" % (str(k), str(v)))
|
34 |
+
args_file.close()
|
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: blue
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
@@ -10,4 +10,6 @@ pinned: false
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
1 |
---
|
2 |
+
title: GPT-SoVITS Zero-shot TTS Demo
|
3 |
+
emoji: 🚀🚀🚀
|
4 |
colorFrom: blue
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
Original:
|
14 |
+
|
15 |
+
https://github.com/RVC-Boss/GPT-SoVITS
|
app.py
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from https://github.com/RVC-Boss/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
|
2 |
+
import os
|
3 |
+
|
4 |
+
gpt_path = os.environ.get(
|
5 |
+
"gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
6 |
+
)
|
7 |
+
sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth")
|
8 |
+
cnhubert_base_path = os.environ.get(
|
9 |
+
"cnhubert_base_path", "pretrained_models/chinese-hubert-base"
|
10 |
+
)
|
11 |
+
bert_path = os.environ.get(
|
12 |
+
"bert_path", "pretrained_models/chinese-roberta-wwm-ext-large"
|
13 |
+
)
|
14 |
+
|
15 |
+
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
16 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
17 |
+
is_half = eval(os.environ.get("is_half", "True"))
|
18 |
+
|
19 |
+
|
20 |
+
import gradio as gr
|
21 |
+
import librosa
|
22 |
+
import numpy as np
|
23 |
+
import torch
|
24 |
+
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
25 |
+
|
26 |
+
from feature_extractor import cnhubert
|
27 |
+
|
28 |
+
cnhubert.cnhubert_base_path = cnhubert_base_path
|
29 |
+
from time import time as ttime
|
30 |
+
|
31 |
+
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
32 |
+
from module.mel_processing import spectrogram_torch
|
33 |
+
from module.models import SynthesizerTrn
|
34 |
+
from my_utils import load_audio
|
35 |
+
from text import cleaned_text_to_sequence
|
36 |
+
from text.cleaner import clean_text
|
37 |
+
|
38 |
+
device = "cuda"
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
40 |
+
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
41 |
+
if is_half == True:
|
42 |
+
bert_model = bert_model.half().to(device)
|
43 |
+
else:
|
44 |
+
bert_model = bert_model.to(device)
|
45 |
+
|
46 |
+
|
47 |
+
# bert_model=bert_model.to(device)
|
48 |
+
def get_bert_feature(text, word2ph):
|
49 |
+
with torch.no_grad():
|
50 |
+
inputs = tokenizer(text, return_tensors="pt")
|
51 |
+
for i in inputs:
|
52 |
+
inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题,精度随bert_model
|
53 |
+
res = bert_model(**inputs, output_hidden_states=True)
|
54 |
+
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
55 |
+
assert len(word2ph) == len(text)
|
56 |
+
phone_level_feature = []
|
57 |
+
for i in range(len(word2ph)):
|
58 |
+
repeat_feature = res[i].repeat(word2ph[i], 1)
|
59 |
+
phone_level_feature.append(repeat_feature)
|
60 |
+
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
61 |
+
# if(is_half==True):phone_level_feature=phone_level_feature.half()
|
62 |
+
return phone_level_feature.T
|
63 |
+
|
64 |
+
|
65 |
+
n_semantic = 1024
|
66 |
+
dict_s2 = torch.load(sovits_path, map_location="cpu")
|
67 |
+
hps = dict_s2["config"]
|
68 |
+
|
69 |
+
|
70 |
+
class DictToAttrRecursive:
|
71 |
+
def __init__(self, input_dict):
|
72 |
+
for key, value in input_dict.items():
|
73 |
+
if isinstance(value, dict):
|
74 |
+
# 如果值是字典,递归调用构造函数
|
75 |
+
setattr(self, key, DictToAttrRecursive(value))
|
76 |
+
else:
|
77 |
+
setattr(self, key, value)
|
78 |
+
|
79 |
+
|
80 |
+
hps = DictToAttrRecursive(hps)
|
81 |
+
hps.model.semantic_frame_rate = "25hz"
|
82 |
+
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
83 |
+
config = dict_s1["config"]
|
84 |
+
ssl_model = cnhubert.get_model()
|
85 |
+
if is_half == True:
|
86 |
+
ssl_model = ssl_model.half().to(device)
|
87 |
+
else:
|
88 |
+
ssl_model = ssl_model.to(device)
|
89 |
+
|
90 |
+
vq_model = SynthesizerTrn(
|
91 |
+
hps.data.filter_length // 2 + 1,
|
92 |
+
hps.train.segment_size // hps.data.hop_length,
|
93 |
+
n_speakers=hps.data.n_speakers,
|
94 |
+
**hps.model
|
95 |
+
)
|
96 |
+
if is_half == True:
|
97 |
+
vq_model = vq_model.half().to(device)
|
98 |
+
else:
|
99 |
+
vq_model = vq_model.to(device)
|
100 |
+
vq_model.eval()
|
101 |
+
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
102 |
+
hz = 50
|
103 |
+
max_sec = config["data"]["max_sec"]
|
104 |
+
# t2s_model = Text2SemanticLightningModule.load_from_checkpoint(checkpoint_path=gpt_path, config=config, map_location="cpu")#########todo
|
105 |
+
t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False)
|
106 |
+
t2s_model.load_state_dict(dict_s1["weight"])
|
107 |
+
if is_half == True:
|
108 |
+
t2s_model = t2s_model.half()
|
109 |
+
t2s_model = t2s_model.to(device)
|
110 |
+
t2s_model.eval()
|
111 |
+
total = sum([param.nelement() for param in t2s_model.parameters()])
|
112 |
+
print("Number of parameter: %.2fM" % (total / 1e6))
|
113 |
+
|
114 |
+
|
115 |
+
def get_spepc(hps, filename):
|
116 |
+
audio = load_audio(filename, int(hps.data.sampling_rate))
|
117 |
+
audio = torch.FloatTensor(audio)
|
118 |
+
audio_norm = audio
|
119 |
+
audio_norm = audio_norm.unsqueeze(0)
|
120 |
+
spec = spectrogram_torch(
|
121 |
+
audio_norm,
|
122 |
+
hps.data.filter_length,
|
123 |
+
hps.data.sampling_rate,
|
124 |
+
hps.data.hop_length,
|
125 |
+
hps.data.win_length,
|
126 |
+
center=False,
|
127 |
+
)
|
128 |
+
return spec
|
129 |
+
|
130 |
+
|
131 |
+
dict_language = {"Chinese": "zh", "English": "en", "Japanese": "ja"}
|
132 |
+
|
133 |
+
|
134 |
+
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language):
|
135 |
+
if len(prompt_text) > 100 or len(text) > 100:
|
136 |
+
return
|
137 |
+
t0 = ttime()
|
138 |
+
prompt_text = prompt_text.strip("\n")
|
139 |
+
prompt_language, text = prompt_language, text.strip("\n")
|
140 |
+
with torch.no_grad():
|
141 |
+
wav16k, _ = librosa.load(ref_wav_path, sr=16000) # 派蒙
|
142 |
+
# length of wav16k in sec should be in 60s
|
143 |
+
if len(wav16k) < 16000 * 60:
|
144 |
+
return
|
145 |
+
wav16k = wav16k[: int(hps.data.sampling_rate * max_sec)]
|
146 |
+
wav16k = torch.from_numpy(wav16k)
|
147 |
+
if is_half == True:
|
148 |
+
wav16k = wav16k.half().to(device)
|
149 |
+
else:
|
150 |
+
wav16k = wav16k.to(device)
|
151 |
+
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
|
152 |
+
"last_hidden_state"
|
153 |
+
].transpose(
|
154 |
+
1, 2
|
155 |
+
) # .float()
|
156 |
+
codes = vq_model.extract_latent(ssl_content)
|
157 |
+
prompt_semantic = codes[0, 0]
|
158 |
+
t1 = ttime()
|
159 |
+
prompt_language = dict_language[prompt_language]
|
160 |
+
text_language = dict_language[text_language]
|
161 |
+
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language)
|
162 |
+
phones1 = cleaned_text_to_sequence(phones1)
|
163 |
+
texts = text.split("\n")
|
164 |
+
audio_opt = []
|
165 |
+
zero_wav = np.zeros(
|
166 |
+
int(hps.data.sampling_rate * 0.3),
|
167 |
+
dtype=np.float16 if is_half == True else np.float32,
|
168 |
+
)
|
169 |
+
for text in texts:
|
170 |
+
phones2, word2ph2, norm_text2 = clean_text(text, text_language)
|
171 |
+
phones2 = cleaned_text_to_sequence(phones2)
|
172 |
+
if prompt_language == "zh":
|
173 |
+
bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
|
174 |
+
else:
|
175 |
+
bert1 = torch.zeros(
|
176 |
+
(1024, len(phones1)),
|
177 |
+
dtype=torch.float16 if is_half == True else torch.float32,
|
178 |
+
).to(device)
|
179 |
+
if text_language == "zh":
|
180 |
+
bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
|
181 |
+
else:
|
182 |
+
bert2 = torch.zeros((1024, len(phones2))).to(bert1)
|
183 |
+
bert = torch.cat([bert1, bert2], 1)
|
184 |
+
|
185 |
+
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
|
186 |
+
bert = bert.to(device).unsqueeze(0)
|
187 |
+
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
188 |
+
prompt = prompt_semantic.unsqueeze(0).to(device)
|
189 |
+
t2 = ttime()
|
190 |
+
with torch.no_grad():
|
191 |
+
# pred_semantic = t2s_model.model.infer(
|
192 |
+
pred_semantic, idx = t2s_model.model.infer_panel(
|
193 |
+
all_phoneme_ids,
|
194 |
+
all_phoneme_len,
|
195 |
+
prompt,
|
196 |
+
bert,
|
197 |
+
# prompt_phone_len=ph_offset,
|
198 |
+
top_k=config["inference"]["top_k"],
|
199 |
+
early_stop_num=hz * max_sec,
|
200 |
+
)
|
201 |
+
t3 = ttime()
|
202 |
+
# print(pred_semantic.shape,idx)
|
203 |
+
pred_semantic = pred_semantic[:, -idx:].unsqueeze(
|
204 |
+
0
|
205 |
+
) # .unsqueeze(0)#mq要多unsqueeze一次
|
206 |
+
refer = get_spepc(hps, ref_wav_path) # .to(device)
|
207 |
+
if is_half == True:
|
208 |
+
refer = refer.half().to(device)
|
209 |
+
else:
|
210 |
+
refer = refer.to(device)
|
211 |
+
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
|
212 |
+
audio = (
|
213 |
+
vq_model.decode(
|
214 |
+
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
|
215 |
+
)
|
216 |
+
.detach()
|
217 |
+
.cpu()
|
218 |
+
.numpy()[0, 0]
|
219 |
+
) ###试试重建不带上prompt部分
|
220 |
+
audio_opt.append(audio)
|
221 |
+
audio_opt.append(zero_wav)
|
222 |
+
t4 = ttime()
|
223 |
+
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
224 |
+
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
|
225 |
+
np.int16
|
226 |
+
)
|
227 |
+
|
228 |
+
|
229 |
+
initial_md = """
|
230 |
+
# GPT-SoVITS Zero-shot TTS Demo
|
231 |
+
|
232 |
+
https://github.com/RVC-Boss/GPT-SoVITS
|
233 |
+
|
234 |
+
*I'm not the author of this model, and I just borrowed it to make a demo.*
|
235 |
+
|
236 |
+
- *Input text is limited to 100 characters.*
|
237 |
+
- *Input audio is limited to 60 seconds.*
|
238 |
+
|
239 |
+
**License**
|
240 |
+
|
241 |
+
https://github.com/RVC-Boss/GPT-SoVITS/blob/main/LICENSE
|
242 |
+
|
243 |
+
This software is open source under the MIT License, the author does not have any control over the software, and the user is solely responsible for the use of the software and for the distribution of the sound derived from the software.
|
244 |
+
If you do not agree with these terms and conditions, you may not use or reference any of the code or files in the package.
|
245 |
+
"""
|
246 |
+
|
247 |
+
with gr.Blocks(title="GPT-SoVITS Zero-shot TTS Demo") as app:
|
248 |
+
gr.Markdown(initial_md)
|
249 |
+
with gr.Group():
|
250 |
+
gr.Markdown(value="*Upload reference audio")
|
251 |
+
with gr.Row():
|
252 |
+
inp_ref = gr.Audio(label="Reference audio", type="filepath")
|
253 |
+
prompt_text = gr.Textbox(label="Transcription of reference audio")
|
254 |
+
prompt_language = gr.Dropdown(
|
255 |
+
label="Language of reference audio",
|
256 |
+
choices=["Chinese", "English", "Japanese"],
|
257 |
+
value="Japanese",
|
258 |
+
)
|
259 |
+
gr.Markdown(value="*Text to synthesize")
|
260 |
+
with gr.Row():
|
261 |
+
text = gr.Textbox(label="Text to synthesize")
|
262 |
+
text_language = gr.Dropdown(
|
263 |
+
label="Language of text",
|
264 |
+
choices=["Chinese", "English", "Japanese"],
|
265 |
+
value="Japanese",
|
266 |
+
)
|
267 |
+
inference_button = gr.Button("Synthesize", variant="primary")
|
268 |
+
output = gr.Audio(label="Result")
|
269 |
+
inference_button.click(
|
270 |
+
get_tts_wav,
|
271 |
+
[inp_ref, prompt_text, prompt_language, text, text_language],
|
272 |
+
[output],
|
273 |
+
)
|
274 |
+
|
275 |
+
app.launch(inbrowser=True)
|
configs/s1.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
train:
|
2 |
+
seed: 1234
|
3 |
+
epochs: 300
|
4 |
+
batch_size: 8
|
5 |
+
gradient_accumulation: 4
|
6 |
+
save_every_n_epoch: 1
|
7 |
+
precision: 16
|
8 |
+
gradient_clip: 1.0
|
9 |
+
optimizer:
|
10 |
+
lr: 0.01
|
11 |
+
lr_init: 0.00001
|
12 |
+
lr_end: 0.0001
|
13 |
+
warmup_steps: 2000
|
14 |
+
decay_steps: 40000
|
15 |
+
data:
|
16 |
+
max_eval_sample: 8
|
17 |
+
max_sec: 54
|
18 |
+
num_workers: 1
|
19 |
+
pad_val: 1024 # same with EOS in model
|
20 |
+
model:
|
21 |
+
vocab_size: 1025
|
22 |
+
phoneme_vocab_size: 512
|
23 |
+
embedding_dim: 512
|
24 |
+
hidden_dim: 512
|
25 |
+
head: 16
|
26 |
+
linear_units: 2048
|
27 |
+
n_layer: 12
|
28 |
+
dropout: 0
|
29 |
+
EOS: 1024
|
30 |
+
inference:
|
31 |
+
top_k: 5
|
configs/s1big.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
train:
|
2 |
+
seed: 1234
|
3 |
+
epochs: 300
|
4 |
+
batch_size: 8
|
5 |
+
gradient_accumulation: 4
|
6 |
+
save_every_n_epoch: 1
|
7 |
+
precision: 16-mixed
|
8 |
+
gradient_clip: 1.0
|
9 |
+
optimizer:
|
10 |
+
lr: 0.01
|
11 |
+
lr_init: 0.00001
|
12 |
+
lr_end: 0.0001
|
13 |
+
warmup_steps: 2000
|
14 |
+
decay_steps: 40000
|
15 |
+
data:
|
16 |
+
max_eval_sample: 8
|
17 |
+
max_sec: 54
|
18 |
+
num_workers: 1
|
19 |
+
pad_val: 1024 # same with EOS in model
|
20 |
+
model:
|
21 |
+
vocab_size: 1025
|
22 |
+
phoneme_vocab_size: 512
|
23 |
+
embedding_dim: 1024
|
24 |
+
hidden_dim: 1024
|
25 |
+
head: 16
|
26 |
+
linear_units: 2048
|
27 |
+
n_layer: 16
|
28 |
+
dropout: 0
|
29 |
+
EOS: 1024
|
30 |
+
inference:
|
31 |
+
top_k: 5
|
configs/s1big2.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
train:
|
2 |
+
seed: 1234
|
3 |
+
epochs: 300
|
4 |
+
batch_size: 12
|
5 |
+
gradient_accumulation: 4
|
6 |
+
save_every_n_epoch: 1
|
7 |
+
precision: 16-mixed
|
8 |
+
gradient_clip: 1.0
|
9 |
+
optimizer:
|
10 |
+
lr: 0.01
|
11 |
+
lr_init: 0.00001
|
12 |
+
lr_end: 0.0001
|
13 |
+
warmup_steps: 2000
|
14 |
+
decay_steps: 40000
|
15 |
+
data:
|
16 |
+
max_eval_sample: 8
|
17 |
+
max_sec: 54
|
18 |
+
num_workers: 1
|
19 |
+
pad_val: 1024 # same with EOS in model
|
20 |
+
model:
|
21 |
+
vocab_size: 1025
|
22 |
+
phoneme_vocab_size: 512
|
23 |
+
embedding_dim: 1024
|
24 |
+
hidden_dim: 1024
|
25 |
+
head: 16
|
26 |
+
linear_units: 2048
|
27 |
+
n_layer: 6
|
28 |
+
dropout: 0
|
29 |
+
EOS: 1024
|
30 |
+
inference:
|
31 |
+
top_k: 5
|
configs/s1longer.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
train:
|
2 |
+
seed: 1234
|
3 |
+
epochs: 20
|
4 |
+
batch_size: 8
|
5 |
+
save_every_n_epoch: 1
|
6 |
+
precision: 16-mixed
|
7 |
+
gradient_clip: 1.0
|
8 |
+
optimizer:
|
9 |
+
lr: 0.01
|
10 |
+
lr_init: 0.00001
|
11 |
+
lr_end: 0.0001
|
12 |
+
warmup_steps: 2000
|
13 |
+
decay_steps: 40000
|
14 |
+
data:
|
15 |
+
max_eval_sample: 8
|
16 |
+
max_sec: 54
|
17 |
+
num_workers: 4
|
18 |
+
pad_val: 1024 # same with EOS in model
|
19 |
+
model:
|
20 |
+
vocab_size: 1025
|
21 |
+
phoneme_vocab_size: 512
|
22 |
+
embedding_dim: 512
|
23 |
+
hidden_dim: 512
|
24 |
+
head: 16
|
25 |
+
linear_units: 2048
|
26 |
+
n_layer: 24
|
27 |
+
dropout: 0
|
28 |
+
EOS: 1024
|
29 |
+
random_bert: 0
|
30 |
+
inference:
|
31 |
+
top_k: 5
|
configs/s1mq.yaml
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
train:
|
2 |
+
seed: 1234
|
3 |
+
epochs: 100
|
4 |
+
batch_size: 6
|
5 |
+
gradient_accumulation: 4
|
6 |
+
save_every_n_epoch: 1
|
7 |
+
precision: 32
|
8 |
+
gradient_clip: 1.0
|
9 |
+
optimizer:
|
10 |
+
lr: 0.01
|
11 |
+
lr_init: 0.00001
|
12 |
+
lr_end: 0.0001
|
13 |
+
warmup_steps: 2000
|
14 |
+
decay_steps: 40000
|
15 |
+
data:
|
16 |
+
max_eval_sample: 8
|
17 |
+
max_sec: 40
|
18 |
+
num_workers: 1
|
19 |
+
pad_val: 1024 # same with EOS in model
|
20 |
+
model:
|
21 |
+
saving_path: "ckpt/"
|
22 |
+
resume_checkpoint: null
|
23 |
+
vocoder_config_path: "quantizer/new_ckpt/config.json"
|
24 |
+
vocoder_ckpt_path: "quantizer/new_ckpt/g_00600000"
|
25 |
+
datadir: "/home/liweiche/GigaSpeech/wavs"
|
26 |
+
metapath: "/home/liweiche/GigaSpeech/train2.json"
|
27 |
+
val_metapath: "/home/liweiche/GigaSpeech/dev2.json"
|
28 |
+
sampledir: "logs/"
|
29 |
+
pretrained_path: null
|
30 |
+
lr: 0.0001
|
31 |
+
batch_size: 200.0
|
32 |
+
train_bucket_size: 8192
|
33 |
+
training_step: 800000
|
34 |
+
optim_flat_percent: 0.0
|
35 |
+
warmup_step: 50
|
36 |
+
adam_beta1: 0.9
|
37 |
+
adam_beta2: 0.98
|
38 |
+
ffd_size: 3072
|
39 |
+
hidden_size: 768
|
40 |
+
enc_nlayers: 6
|
41 |
+
dec_nlayers: 6
|
42 |
+
nheads: 12
|
43 |
+
ar_layer: 4
|
44 |
+
ar_ffd_size: 1024
|
45 |
+
ar_hidden_size: 256
|
46 |
+
ar_nheads: 4
|
47 |
+
aligner_softmax_temp: 1.0
|
48 |
+
layer_norm_eps: 0.00001
|
49 |
+
speaker_embed_dropout: 0.05
|
50 |
+
label_smoothing: 0.0
|
51 |
+
val_check_interval: 5000
|
52 |
+
check_val_every_n_epoch: 1
|
53 |
+
precision: "fp16"
|
54 |
+
nworkers: 16
|
55 |
+
distributed: true
|
56 |
+
accelerator: "ddp"
|
57 |
+
version: null
|
58 |
+
accumulate_grad_batches: 1
|
59 |
+
use_repetition_token: true
|
60 |
+
use_repetition_gating: false
|
61 |
+
repetition_penalty: 1.0
|
62 |
+
sampling_temperature: 1.0
|
63 |
+
top_k: -1
|
64 |
+
min_top_k: 3
|
65 |
+
top_p: 0.8
|
66 |
+
sample_num: 4
|
67 |
+
length_penalty_max_length: 15000
|
68 |
+
length_penalty_max_prob: 0.95
|
69 |
+
max_input_length: 2048
|
70 |
+
max_output_length: 2000
|
71 |
+
sample_rate: 16000
|
72 |
+
n_codes: 1024
|
73 |
+
n_cluster_groups: 1
|
74 |
+
phone_context_window: 4
|
75 |
+
phoneset_size: 1000
|
76 |
+
inference:
|
77 |
+
top_k: 5
|
configs/s2.json
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 100,
|
4 |
+
"eval_interval": 500,
|
5 |
+
"seed": 1234,
|
6 |
+
"epochs": 100,
|
7 |
+
"learning_rate": 0.0001,
|
8 |
+
"betas": [
|
9 |
+
0.8,
|
10 |
+
0.99
|
11 |
+
],
|
12 |
+
"eps": 1e-09,
|
13 |
+
"batch_size": 32,
|
14 |
+
"fp16_run": true,
|
15 |
+
"lr_decay": 0.999875,
|
16 |
+
"segment_size": 20480,
|
17 |
+
"init_lr_ratio": 1,
|
18 |
+
"warmup_epochs": 0,
|
19 |
+
"c_mel": 45,
|
20 |
+
"c_kl": 1.0,
|
21 |
+
"text_low_lr_rate": 0.4
|
22 |
+
},
|
23 |
+
"data": {
|
24 |
+
"max_wav_value": 32768.0,
|
25 |
+
"sampling_rate": 32000,
|
26 |
+
"filter_length": 2048,
|
27 |
+
"hop_length": 640,
|
28 |
+
"win_length": 2048,
|
29 |
+
"n_mel_channels": 128,
|
30 |
+
"mel_fmin": 0.0,
|
31 |
+
"mel_fmax": null,
|
32 |
+
"add_blank": true,
|
33 |
+
"n_speakers": 300,
|
34 |
+
"cleaned_text": true
|
35 |
+
},
|
36 |
+
"model": {
|
37 |
+
"inter_channels": 192,
|
38 |
+
"hidden_channels": 192,
|
39 |
+
"filter_channels": 768,
|
40 |
+
"n_heads": 2,
|
41 |
+
"n_layers": 6,
|
42 |
+
"kernel_size": 3,
|
43 |
+
"p_dropout": 0.1,
|
44 |
+
"resblock": "1",
|
45 |
+
"resblock_kernel_sizes": [
|
46 |
+
3,
|
47 |
+
7,
|
48 |
+
11
|
49 |
+
],
|
50 |
+
"resblock_dilation_sizes": [
|
51 |
+
[
|
52 |
+
1,
|
53 |
+
3,
|
54 |
+
5
|
55 |
+
],
|
56 |
+
[
|
57 |
+
1,
|
58 |
+
3,
|
59 |
+
5
|
60 |
+
],
|
61 |
+
[
|
62 |
+
1,
|
63 |
+
3,
|
64 |
+
5
|
65 |
+
]
|
66 |
+
],
|
67 |
+
"upsample_rates": [
|
68 |
+
10,
|
69 |
+
8,
|
70 |
+
2,
|
71 |
+
2,
|
72 |
+
2
|
73 |
+
],
|
74 |
+
"upsample_initial_channel": 512,
|
75 |
+
"upsample_kernel_sizes": [
|
76 |
+
16,
|
77 |
+
16,
|
78 |
+
8,
|
79 |
+
2,
|
80 |
+
2
|
81 |
+
],
|
82 |
+
"n_layers_q": 3,
|
83 |
+
"use_spectral_norm": false,
|
84 |
+
"gin_channels": 512,
|
85 |
+
"semantic_frame_rate": "25hz",
|
86 |
+
"freeze_quantizer": true
|
87 |
+
},
|
88 |
+
"s2_ckpt_dir": "logs/s2/big2k1",
|
89 |
+
"content_module": "cnhubert"
|
90 |
+
}
|
configs/train.yaml
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gpu:
|
2 |
+
n_card: 1
|
3 |
+
n_process_per_card: 2
|
4 |
+
io:
|
5 |
+
text_path: D:\RVC1006\GPT-SoVITS\GPT_SoVITS
|
6 |
+
save_every_n_epoch: 1
|
7 |
+
precision: 16-mixed
|
8 |
+
gradient_clip: 1.0
|
9 |
+
optimizer:
|
10 |
+
lr: 0.01
|
11 |
+
lr_init: 0.00001
|
12 |
+
lr_end: 0.0001
|
13 |
+
warmup_steps: 2000
|
14 |
+
decay_steps: 40000
|
15 |
+
data:
|
16 |
+
max_eval_sample: 8
|
17 |
+
max_sec: 54
|
18 |
+
num_workers: 1
|
19 |
+
pad_val: 1024 # same with EOS in model
|
20 |
+
model:
|
21 |
+
vocab_size: 1025
|
22 |
+
phoneme_vocab_size: 512
|
23 |
+
embedding_dim: 512
|
24 |
+
hidden_dim: 512
|
25 |
+
head: 16
|
26 |
+
linear_units: 2048
|
27 |
+
n_layer: 24
|
28 |
+
dropout: 0
|
29 |
+
EOS: 1024
|
30 |
+
random_bert: 0
|
31 |
+
inference:
|
32 |
+
top_k: 5
|
feature_extractor/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from . import cnhubert, whisper_enc
|
2 |
+
|
3 |
+
content_module_map = {
|
4 |
+
'cnhubert': cnhubert,
|
5 |
+
'whisper': whisper_enc
|
6 |
+
}
|
feature_extractor/cnhubert.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
|
3 |
+
import librosa
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import soundfile as sf
|
7 |
+
import logging
|
8 |
+
|
9 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
10 |
+
|
11 |
+
from transformers import (
|
12 |
+
Wav2Vec2FeatureExtractor,
|
13 |
+
HubertModel,
|
14 |
+
)
|
15 |
+
|
16 |
+
import utils
|
17 |
+
import torch.nn as nn
|
18 |
+
|
19 |
+
cnhubert_base_path = None
|
20 |
+
|
21 |
+
|
22 |
+
class CNHubert(nn.Module):
|
23 |
+
def __init__(self):
|
24 |
+
super().__init__()
|
25 |
+
self.model = HubertModel.from_pretrained(cnhubert_base_path)
|
26 |
+
self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
|
27 |
+
cnhubert_base_path
|
28 |
+
)
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
input_values = self.feature_extractor(
|
32 |
+
x, return_tensors="pt", sampling_rate=16000
|
33 |
+
).input_values.to(x.device)
|
34 |
+
feats = self.model(input_values)["last_hidden_state"]
|
35 |
+
return feats
|
36 |
+
|
37 |
+
|
38 |
+
# class CNHubertLarge(nn.Module):
|
39 |
+
# def __init__(self):
|
40 |
+
# super().__init__()
|
41 |
+
# self.model = HubertModel.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-hubert-large")
|
42 |
+
# self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-hubert-large")
|
43 |
+
# def forward(self, x):
|
44 |
+
# input_values = self.feature_extractor(x, return_tensors="pt", sampling_rate=16000).input_values.to(x.device)
|
45 |
+
# feats = self.model(input_values)["last_hidden_state"]
|
46 |
+
# return feats
|
47 |
+
#
|
48 |
+
# class CVec(nn.Module):
|
49 |
+
# def __init__(self):
|
50 |
+
# super().__init__()
|
51 |
+
# self.model = HubertModel.from_pretrained("/data/docker/liujing04/vc-webui-big/hubert_base")
|
52 |
+
# self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("/data/docker/liujing04/vc-webui-big/hubert_base")
|
53 |
+
# def forward(self, x):
|
54 |
+
# input_values = self.feature_extractor(x, return_tensors="pt", sampling_rate=16000).input_values.to(x.device)
|
55 |
+
# feats = self.model(input_values)["last_hidden_state"]
|
56 |
+
# return feats
|
57 |
+
#
|
58 |
+
# class cnw2v2base(nn.Module):
|
59 |
+
# def __init__(self):
|
60 |
+
# super().__init__()
|
61 |
+
# self.model = Wav2Vec2Model.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-wav2vec2-base")
|
62 |
+
# self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-wav2vec2-base")
|
63 |
+
# def forward(self, x):
|
64 |
+
# input_values = self.feature_extractor(x, return_tensors="pt", sampling_rate=16000).input_values.to(x.device)
|
65 |
+
# feats = self.model(input_values)["last_hidden_state"]
|
66 |
+
# return feats
|
67 |
+
|
68 |
+
|
69 |
+
def get_model():
|
70 |
+
model = CNHubert()
|
71 |
+
model.eval()
|
72 |
+
return model
|
73 |
+
|
74 |
+
|
75 |
+
# def get_large_model():
|
76 |
+
# model = CNHubertLarge()
|
77 |
+
# model.eval()
|
78 |
+
# return model
|
79 |
+
#
|
80 |
+
# def get_model_cvec():
|
81 |
+
# model = CVec()
|
82 |
+
# model.eval()
|
83 |
+
# return model
|
84 |
+
#
|
85 |
+
# def get_model_cnw2v2base():
|
86 |
+
# model = cnw2v2base()
|
87 |
+
# model.eval()
|
88 |
+
# return model
|
89 |
+
|
90 |
+
|
91 |
+
def get_content(hmodel, wav_16k_tensor):
|
92 |
+
with torch.no_grad():
|
93 |
+
feats = hmodel(wav_16k_tensor)
|
94 |
+
return feats.transpose(1, 2)
|
95 |
+
|
96 |
+
|
97 |
+
if __name__ == "__main__":
|
98 |
+
model = get_model()
|
99 |
+
src_path = "/Users/Shared/原音频2.wav"
|
100 |
+
wav_16k_tensor = utils.load_wav_to_torch_and_resample(src_path, 16000)
|
101 |
+
model = model
|
102 |
+
wav_16k_tensor = wav_16k_tensor
|
103 |
+
feats = get_content(model, wav_16k_tensor)
|
104 |
+
print(feats.shape)
|
feature_extractor/whisper_enc.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def get_model():
|
5 |
+
import whisper
|
6 |
+
|
7 |
+
model = whisper.load_model("small", device="cpu")
|
8 |
+
|
9 |
+
return model.encoder
|
10 |
+
|
11 |
+
|
12 |
+
def get_content(model=None, wav_16k_tensor=None):
|
13 |
+
from whisper import log_mel_spectrogram, pad_or_trim
|
14 |
+
|
15 |
+
dev = next(model.parameters()).device
|
16 |
+
mel = log_mel_spectrogram(wav_16k_tensor).to(dev)[:, :3000]
|
17 |
+
# if torch.cuda.is_available():
|
18 |
+
# mel = mel.to(torch.float16)
|
19 |
+
feature_len = mel.shape[-1] // 2
|
20 |
+
assert mel.shape[-1] < 3000, "输入音频过长,只允许输入30以内音频"
|
21 |
+
with torch.no_grad():
|
22 |
+
feature = model(pad_or_trim(mel, 3000).unsqueeze(0))[
|
23 |
+
:1, :feature_len, :
|
24 |
+
].transpose(1, 2)
|
25 |
+
return feature
|
inference_webui.py
ADDED
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
gpt_path = os.environ.get(
|
4 |
+
"gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
5 |
+
)
|
6 |
+
sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth")
|
7 |
+
cnhubert_base_path = os.environ.get(
|
8 |
+
"cnhubert_base_path", "pretrained_models/chinese-hubert-base"
|
9 |
+
)
|
10 |
+
bert_path = os.environ.get(
|
11 |
+
"bert_path", "pretrained_models/chinese-roberta-wwm-ext-large"
|
12 |
+
)
|
13 |
+
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
|
14 |
+
infer_ttswebui = int(infer_ttswebui)
|
15 |
+
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
16 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
17 |
+
is_half = eval(os.environ.get("is_half", "True"))
|
18 |
+
import gradio as gr
|
19 |
+
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
20 |
+
import numpy as np
|
21 |
+
import librosa,torch
|
22 |
+
from feature_extractor import cnhubert
|
23 |
+
cnhubert.cnhubert_base_path=cnhubert_base_path
|
24 |
+
|
25 |
+
from module.models import SynthesizerTrn
|
26 |
+
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
27 |
+
from text import cleaned_text_to_sequence
|
28 |
+
from text.cleaner import clean_text
|
29 |
+
from time import time as ttime
|
30 |
+
from module.mel_processing import spectrogram_torch
|
31 |
+
from my_utils import load_audio
|
32 |
+
|
33 |
+
device = "cuda"
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
35 |
+
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
36 |
+
if is_half == True:
|
37 |
+
bert_model = bert_model.half().to(device)
|
38 |
+
else:
|
39 |
+
bert_model = bert_model.to(device)
|
40 |
+
|
41 |
+
|
42 |
+
# bert_model=bert_model.to(device)
|
43 |
+
def get_bert_feature(text, word2ph):
|
44 |
+
with torch.no_grad():
|
45 |
+
inputs = tokenizer(text, return_tensors="pt")
|
46 |
+
for i in inputs:
|
47 |
+
inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题,精度随bert_model
|
48 |
+
res = bert_model(**inputs, output_hidden_states=True)
|
49 |
+
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
50 |
+
assert len(word2ph) == len(text)
|
51 |
+
phone_level_feature = []
|
52 |
+
for i in range(len(word2ph)):
|
53 |
+
repeat_feature = res[i].repeat(word2ph[i], 1)
|
54 |
+
phone_level_feature.append(repeat_feature)
|
55 |
+
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
56 |
+
# if(is_half==True):phone_level_feature=phone_level_feature.half()
|
57 |
+
return phone_level_feature.T
|
58 |
+
|
59 |
+
|
60 |
+
n_semantic = 1024
|
61 |
+
|
62 |
+
dict_s2=torch.load(sovits_path,map_location="cpu")
|
63 |
+
hps=dict_s2["config"]
|
64 |
+
|
65 |
+
class DictToAttrRecursive(dict):
|
66 |
+
def __init__(self, input_dict):
|
67 |
+
super().__init__(input_dict)
|
68 |
+
for key, value in input_dict.items():
|
69 |
+
if isinstance(value, dict):
|
70 |
+
value = DictToAttrRecursive(value)
|
71 |
+
self[key] = value
|
72 |
+
setattr(self, key, value)
|
73 |
+
|
74 |
+
def __getattr__(self, item):
|
75 |
+
try:
|
76 |
+
return self[item]
|
77 |
+
except KeyError:
|
78 |
+
raise AttributeError(f"Attribute {item} not found")
|
79 |
+
|
80 |
+
def __setattr__(self, key, value):
|
81 |
+
if isinstance(value, dict):
|
82 |
+
value = DictToAttrRecursive(value)
|
83 |
+
super(DictToAttrRecursive, self).__setitem__(key, value)
|
84 |
+
super().__setattr__(key, value)
|
85 |
+
|
86 |
+
def __delattr__(self, item):
|
87 |
+
try:
|
88 |
+
del self[item]
|
89 |
+
except KeyError:
|
90 |
+
raise AttributeError(f"Attribute {item} not found")
|
91 |
+
|
92 |
+
|
93 |
+
hps = DictToAttrRecursive(hps)
|
94 |
+
|
95 |
+
hps.model.semantic_frame_rate = "25hz"
|
96 |
+
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
97 |
+
config = dict_s1["config"]
|
98 |
+
ssl_model = cnhubert.get_model()
|
99 |
+
if is_half == True:
|
100 |
+
ssl_model = ssl_model.half().to(device)
|
101 |
+
else:
|
102 |
+
ssl_model = ssl_model.to(device)
|
103 |
+
|
104 |
+
vq_model = SynthesizerTrn(
|
105 |
+
hps.data.filter_length // 2 + 1,
|
106 |
+
hps.train.segment_size // hps.data.hop_length,
|
107 |
+
n_speakers=hps.data.n_speakers,
|
108 |
+
**hps.model
|
109 |
+
)
|
110 |
+
if is_half == True:
|
111 |
+
vq_model = vq_model.half().to(device)
|
112 |
+
else:
|
113 |
+
vq_model = vq_model.to(device)
|
114 |
+
vq_model.eval()
|
115 |
+
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
116 |
+
hz = 50
|
117 |
+
max_sec = config["data"]["max_sec"]
|
118 |
+
# t2s_model = Text2SemanticLightningModule.load_from_checkpoint(checkpoint_path=gpt_path, config=config, map_location="cpu")#########todo
|
119 |
+
t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False)
|
120 |
+
t2s_model.load_state_dict(dict_s1["weight"])
|
121 |
+
if is_half == True:
|
122 |
+
t2s_model = t2s_model.half()
|
123 |
+
t2s_model = t2s_model.to(device)
|
124 |
+
t2s_model.eval()
|
125 |
+
total = sum([param.nelement() for param in t2s_model.parameters()])
|
126 |
+
print("Number of parameter: %.2fM" % (total / 1e6))
|
127 |
+
|
128 |
+
|
129 |
+
def get_spepc(hps, filename):
|
130 |
+
audio = load_audio(filename, int(hps.data.sampling_rate))
|
131 |
+
audio = torch.FloatTensor(audio)
|
132 |
+
audio_norm = audio
|
133 |
+
audio_norm = audio_norm.unsqueeze(0)
|
134 |
+
spec = spectrogram_torch(
|
135 |
+
audio_norm,
|
136 |
+
hps.data.filter_length,
|
137 |
+
hps.data.sampling_rate,
|
138 |
+
hps.data.hop_length,
|
139 |
+
hps.data.win_length,
|
140 |
+
center=False,
|
141 |
+
)
|
142 |
+
return spec
|
143 |
+
|
144 |
+
|
145 |
+
dict_language = {"中文": "zh", "英文": "en", "日文": "ja"}
|
146 |
+
|
147 |
+
|
148 |
+
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language):
|
149 |
+
t0 = ttime()
|
150 |
+
prompt_text = prompt_text.strip("\n")
|
151 |
+
prompt_language, text = prompt_language, text.strip("\n")
|
152 |
+
with torch.no_grad():
|
153 |
+
wav16k, sr = librosa.load(ref_wav_path, sr=16000) # 派蒙
|
154 |
+
wav16k = torch.from_numpy(wav16k)
|
155 |
+
if is_half == True:
|
156 |
+
wav16k = wav16k.half().to(device)
|
157 |
+
else:
|
158 |
+
wav16k = wav16k.to(device)
|
159 |
+
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
|
160 |
+
"last_hidden_state"
|
161 |
+
].transpose(
|
162 |
+
1, 2
|
163 |
+
) # .float()
|
164 |
+
codes = vq_model.extract_latent(ssl_content)
|
165 |
+
prompt_semantic = codes[0, 0]
|
166 |
+
t1 = ttime()
|
167 |
+
prompt_language = dict_language[prompt_language]
|
168 |
+
text_language = dict_language[text_language]
|
169 |
+
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language)
|
170 |
+
phones1 = cleaned_text_to_sequence(phones1)
|
171 |
+
texts = text.split("\n")
|
172 |
+
audio_opt = []
|
173 |
+
zero_wav = np.zeros(
|
174 |
+
int(hps.data.sampling_rate * 0.3),
|
175 |
+
dtype=np.float16 if is_half == True else np.float32,
|
176 |
+
)
|
177 |
+
for text in texts:
|
178 |
+
phones2, word2ph2, norm_text2 = clean_text(text, text_language)
|
179 |
+
phones2 = cleaned_text_to_sequence(phones2)
|
180 |
+
if prompt_language == "zh":
|
181 |
+
bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
|
182 |
+
else:
|
183 |
+
bert1 = torch.zeros(
|
184 |
+
(1024, len(phones1)),
|
185 |
+
dtype=torch.float16 if is_half == True else torch.float32,
|
186 |
+
).to(device)
|
187 |
+
if text_language == "zh":
|
188 |
+
bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
|
189 |
+
else:
|
190 |
+
bert2 = torch.zeros((1024, len(phones2))).to(bert1)
|
191 |
+
bert = torch.cat([bert1, bert2], 1)
|
192 |
+
|
193 |
+
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
|
194 |
+
bert = bert.to(device).unsqueeze(0)
|
195 |
+
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
196 |
+
prompt = prompt_semantic.unsqueeze(0).to(device)
|
197 |
+
t2 = ttime()
|
198 |
+
with torch.no_grad():
|
199 |
+
# pred_semantic = t2s_model.model.infer(
|
200 |
+
pred_semantic, idx = t2s_model.model.infer_panel(
|
201 |
+
all_phoneme_ids,
|
202 |
+
all_phoneme_len,
|
203 |
+
prompt,
|
204 |
+
bert,
|
205 |
+
# prompt_phone_len=ph_offset,
|
206 |
+
top_k=config["inference"]["top_k"],
|
207 |
+
early_stop_num=hz * max_sec,
|
208 |
+
)
|
209 |
+
t3 = ttime()
|
210 |
+
# print(pred_semantic.shape,idx)
|
211 |
+
pred_semantic = pred_semantic[:, -idx:].unsqueeze(
|
212 |
+
0
|
213 |
+
) # .unsqueeze(0)#mq要多unsqueeze一次
|
214 |
+
refer = get_spepc(hps, ref_wav_path) # .to(device)
|
215 |
+
if is_half == True:
|
216 |
+
refer = refer.half().to(device)
|
217 |
+
else:
|
218 |
+
refer = refer.to(device)
|
219 |
+
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
|
220 |
+
audio = (
|
221 |
+
vq_model.decode(
|
222 |
+
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
|
223 |
+
)
|
224 |
+
.detach()
|
225 |
+
.cpu()
|
226 |
+
.numpy()[0, 0]
|
227 |
+
) ###试试重建不带上prompt部分
|
228 |
+
audio_opt.append(audio)
|
229 |
+
audio_opt.append(zero_wav)
|
230 |
+
t4 = ttime()
|
231 |
+
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
232 |
+
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
|
233 |
+
np.int16
|
234 |
+
)
|
235 |
+
|
236 |
+
|
237 |
+
splits = {
|
238 |
+
",",
|
239 |
+
"。",
|
240 |
+
"?",
|
241 |
+
"!",
|
242 |
+
",",
|
243 |
+
".",
|
244 |
+
"?",
|
245 |
+
"!",
|
246 |
+
"~",
|
247 |
+
":",
|
248 |
+
":",
|
249 |
+
"—",
|
250 |
+
"…",
|
251 |
+
} # 不考虑省略号
|
252 |
+
|
253 |
+
|
254 |
+
def split(todo_text):
|
255 |
+
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
256 |
+
if todo_text[-1] not in splits:
|
257 |
+
todo_text += "。"
|
258 |
+
i_split_head = i_split_tail = 0
|
259 |
+
len_text = len(todo_text)
|
260 |
+
todo_texts = []
|
261 |
+
while 1:
|
262 |
+
if i_split_head >= len_text:
|
263 |
+
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
264 |
+
if todo_text[i_split_head] in splits:
|
265 |
+
i_split_head += 1
|
266 |
+
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
267 |
+
i_split_tail = i_split_head
|
268 |
+
else:
|
269 |
+
i_split_head += 1
|
270 |
+
return todo_texts
|
271 |
+
|
272 |
+
|
273 |
+
def cut1(inp):
|
274 |
+
inp = inp.strip("\n")
|
275 |
+
inps = split(inp)
|
276 |
+
split_idx = list(range(0, len(inps), 5))
|
277 |
+
split_idx[-1] = None
|
278 |
+
if len(split_idx) > 1:
|
279 |
+
opts = []
|
280 |
+
for idx in range(len(split_idx) - 1):
|
281 |
+
opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]]))
|
282 |
+
else:
|
283 |
+
opts = [inp]
|
284 |
+
return "\n".join(opts)
|
285 |
+
|
286 |
+
|
287 |
+
def cut2(inp):
|
288 |
+
inp = inp.strip("\n")
|
289 |
+
inps = split(inp)
|
290 |
+
if len(inps) < 2:
|
291 |
+
return [inp]
|
292 |
+
opts = []
|
293 |
+
summ = 0
|
294 |
+
tmp_str = ""
|
295 |
+
for i in range(len(inps)):
|
296 |
+
summ += len(inps[i])
|
297 |
+
tmp_str += inps[i]
|
298 |
+
if summ > 50:
|
299 |
+
summ = 0
|
300 |
+
opts.append(tmp_str)
|
301 |
+
tmp_str = ""
|
302 |
+
if tmp_str != "":
|
303 |
+
opts.append(tmp_str)
|
304 |
+
if len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
|
305 |
+
opts[-2] = opts[-2] + opts[-1]
|
306 |
+
opts = opts[:-1]
|
307 |
+
return "\n".join(opts)
|
308 |
+
|
309 |
+
|
310 |
+
def cut3(inp):
|
311 |
+
inp = inp.strip("\n")
|
312 |
+
return "\n".join(["%s。" % item for item in inp.strip("。").split("。")])
|
313 |
+
|
314 |
+
|
315 |
+
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
316 |
+
gr.Markdown(
|
317 |
+
value="本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>."
|
318 |
+
)
|
319 |
+
# with gr.Tabs():
|
320 |
+
# with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
|
321 |
+
with gr.Group():
|
322 |
+
gr.Markdown(value="*请上传并填写参考信息")
|
323 |
+
with gr.Row():
|
324 |
+
inp_ref = gr.Audio(label="请上传参考音频", type="filepath")
|
325 |
+
prompt_text = gr.Textbox(label="参考音频的文本", value="")
|
326 |
+
prompt_language = gr.Dropdown(
|
327 |
+
label="参考音频的语种", choices=["中文", "英文", "日文"], value="中文"
|
328 |
+
)
|
329 |
+
gr.Markdown(value="*请填写需要合成的目标文本")
|
330 |
+
with gr.Row():
|
331 |
+
text = gr.Textbox(label="需要合成的文本", value="")
|
332 |
+
text_language = gr.Dropdown(
|
333 |
+
label="需要合成的语种", choices=["中文", "英文", "日文"], value="中文"
|
334 |
+
)
|
335 |
+
inference_button = gr.Button("合成语音", variant="primary")
|
336 |
+
output = gr.Audio(label="输出的语音")
|
337 |
+
inference_button.click(
|
338 |
+
get_tts_wav,
|
339 |
+
[inp_ref, prompt_text, prompt_language, text, text_language],
|
340 |
+
[output],
|
341 |
+
)
|
342 |
+
|
343 |
+
gr.Markdown(value="文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。")
|
344 |
+
with gr.Row():
|
345 |
+
text_inp = gr.Textbox(label="需要合成的切分前文本", value="")
|
346 |
+
button1 = gr.Button("凑五句一切", variant="primary")
|
347 |
+
button2 = gr.Button("凑50字一切", variant="primary")
|
348 |
+
button3 = gr.Button("按中文句号。切", variant="primary")
|
349 |
+
text_opt = gr.Textbox(label="切分后文本", value="")
|
350 |
+
button1.click(cut1, [text_inp], [text_opt])
|
351 |
+
button2.click(cut2, [text_inp], [text_opt])
|
352 |
+
button3.click(cut3, [text_inp], [text_opt])
|
353 |
+
gr.Markdown(value="后续将支持混合语种编码文本输入。")
|
354 |
+
|
355 |
+
app.queue(concurrency_count=511, max_size=1022).launch(
|
356 |
+
server_name="0.0.0.0",
|
357 |
+
inbrowser=True,
|
358 |
+
server_port=infer_ttswebui,
|
359 |
+
quiet=True,
|
360 |
+
)
|
module/__init__.py
ADDED
File without changes
|
module/attentions.py
ADDED
@@ -0,0 +1,709 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
from module import commons
|
7 |
+
from module.modules import LayerNorm
|
8 |
+
|
9 |
+
|
10 |
+
class Encoder(nn.Module):
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
hidden_channels,
|
14 |
+
filter_channels,
|
15 |
+
n_heads,
|
16 |
+
n_layers,
|
17 |
+
kernel_size=1,
|
18 |
+
p_dropout=0.0,
|
19 |
+
window_size=4,
|
20 |
+
isflow=False,
|
21 |
+
**kwargs
|
22 |
+
):
|
23 |
+
super().__init__()
|
24 |
+
self.hidden_channels = hidden_channels
|
25 |
+
self.filter_channels = filter_channels
|
26 |
+
self.n_heads = n_heads
|
27 |
+
self.n_layers = n_layers
|
28 |
+
self.kernel_size = kernel_size
|
29 |
+
self.p_dropout = p_dropout
|
30 |
+
self.window_size = window_size
|
31 |
+
|
32 |
+
self.drop = nn.Dropout(p_dropout)
|
33 |
+
self.attn_layers = nn.ModuleList()
|
34 |
+
self.norm_layers_1 = nn.ModuleList()
|
35 |
+
self.ffn_layers = nn.ModuleList()
|
36 |
+
self.norm_layers_2 = nn.ModuleList()
|
37 |
+
for i in range(self.n_layers):
|
38 |
+
self.attn_layers.append(
|
39 |
+
MultiHeadAttention(
|
40 |
+
hidden_channels,
|
41 |
+
hidden_channels,
|
42 |
+
n_heads,
|
43 |
+
p_dropout=p_dropout,
|
44 |
+
window_size=window_size,
|
45 |
+
)
|
46 |
+
)
|
47 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
48 |
+
self.ffn_layers.append(
|
49 |
+
FFN(
|
50 |
+
hidden_channels,
|
51 |
+
hidden_channels,
|
52 |
+
filter_channels,
|
53 |
+
kernel_size,
|
54 |
+
p_dropout=p_dropout,
|
55 |
+
)
|
56 |
+
)
|
57 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
58 |
+
if isflow:
|
59 |
+
cond_layer = torch.nn.Conv1d(
|
60 |
+
kwargs["gin_channels"], 2 * hidden_channels * n_layers, 1
|
61 |
+
)
|
62 |
+
self.cond_pre = torch.nn.Conv1d(hidden_channels, 2 * hidden_channels, 1)
|
63 |
+
self.cond_layer = weight_norm_modules(cond_layer, name="weight")
|
64 |
+
self.gin_channels = kwargs["gin_channels"]
|
65 |
+
|
66 |
+
def forward(self, x, x_mask, g=None):
|
67 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
68 |
+
x = x * x_mask
|
69 |
+
if g is not None:
|
70 |
+
g = self.cond_layer(g)
|
71 |
+
|
72 |
+
for i in range(self.n_layers):
|
73 |
+
if g is not None:
|
74 |
+
x = self.cond_pre(x)
|
75 |
+
cond_offset = i * 2 * self.hidden_channels
|
76 |
+
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
77 |
+
x = commons.fused_add_tanh_sigmoid_multiply(
|
78 |
+
x, g_l, torch.IntTensor([self.hidden_channels])
|
79 |
+
)
|
80 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
81 |
+
y = self.drop(y)
|
82 |
+
x = self.norm_layers_1[i](x + y)
|
83 |
+
|
84 |
+
y = self.ffn_layers[i](x, x_mask)
|
85 |
+
y = self.drop(y)
|
86 |
+
x = self.norm_layers_2[i](x + y)
|
87 |
+
x = x * x_mask
|
88 |
+
return x
|
89 |
+
|
90 |
+
|
91 |
+
class Decoder(nn.Module):
|
92 |
+
def __init__(
|
93 |
+
self,
|
94 |
+
hidden_channels,
|
95 |
+
filter_channels,
|
96 |
+
n_heads,
|
97 |
+
n_layers,
|
98 |
+
kernel_size=1,
|
99 |
+
p_dropout=0.0,
|
100 |
+
proximal_bias=False,
|
101 |
+
proximal_init=True,
|
102 |
+
**kwargs
|
103 |
+
):
|
104 |
+
super().__init__()
|
105 |
+
self.hidden_channels = hidden_channels
|
106 |
+
self.filter_channels = filter_channels
|
107 |
+
self.n_heads = n_heads
|
108 |
+
self.n_layers = n_layers
|
109 |
+
self.kernel_size = kernel_size
|
110 |
+
self.p_dropout = p_dropout
|
111 |
+
self.proximal_bias = proximal_bias
|
112 |
+
self.proximal_init = proximal_init
|
113 |
+
|
114 |
+
self.drop = nn.Dropout(p_dropout)
|
115 |
+
self.self_attn_layers = nn.ModuleList()
|
116 |
+
self.norm_layers_0 = nn.ModuleList()
|
117 |
+
self.encdec_attn_layers = nn.ModuleList()
|
118 |
+
self.norm_layers_1 = nn.ModuleList()
|
119 |
+
self.ffn_layers = nn.ModuleList()
|
120 |
+
self.norm_layers_2 = nn.ModuleList()
|
121 |
+
for i in range(self.n_layers):
|
122 |
+
self.self_attn_layers.append(
|
123 |
+
MultiHeadAttention(
|
124 |
+
hidden_channels,
|
125 |
+
hidden_channels,
|
126 |
+
n_heads,
|
127 |
+
p_dropout=p_dropout,
|
128 |
+
proximal_bias=proximal_bias,
|
129 |
+
proximal_init=proximal_init,
|
130 |
+
)
|
131 |
+
)
|
132 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
133 |
+
self.encdec_attn_layers.append(
|
134 |
+
MultiHeadAttention(
|
135 |
+
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
|
136 |
+
)
|
137 |
+
)
|
138 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
139 |
+
self.ffn_layers.append(
|
140 |
+
FFN(
|
141 |
+
hidden_channels,
|
142 |
+
hidden_channels,
|
143 |
+
filter_channels,
|
144 |
+
kernel_size,
|
145 |
+
p_dropout=p_dropout,
|
146 |
+
causal=True,
|
147 |
+
)
|
148 |
+
)
|
149 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
150 |
+
|
151 |
+
def forward(self, x, x_mask, h, h_mask):
|
152 |
+
"""
|
153 |
+
x: decoder input
|
154 |
+
h: encoder output
|
155 |
+
"""
|
156 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
157 |
+
device=x.device, dtype=x.dtype
|
158 |
+
)
|
159 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
160 |
+
x = x * x_mask
|
161 |
+
for i in range(self.n_layers):
|
162 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
163 |
+
y = self.drop(y)
|
164 |
+
x = self.norm_layers_0[i](x + y)
|
165 |
+
|
166 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
167 |
+
y = self.drop(y)
|
168 |
+
x = self.norm_layers_1[i](x + y)
|
169 |
+
|
170 |
+
y = self.ffn_layers[i](x, x_mask)
|
171 |
+
y = self.drop(y)
|
172 |
+
x = self.norm_layers_2[i](x + y)
|
173 |
+
x = x * x_mask
|
174 |
+
return x
|
175 |
+
|
176 |
+
|
177 |
+
class MultiHeadAttention(nn.Module):
|
178 |
+
def __init__(
|
179 |
+
self,
|
180 |
+
channels,
|
181 |
+
out_channels,
|
182 |
+
n_heads,
|
183 |
+
p_dropout=0.0,
|
184 |
+
window_size=None,
|
185 |
+
heads_share=True,
|
186 |
+
block_length=None,
|
187 |
+
proximal_bias=False,
|
188 |
+
proximal_init=False,
|
189 |
+
):
|
190 |
+
super().__init__()
|
191 |
+
assert channels % n_heads == 0
|
192 |
+
|
193 |
+
self.channels = channels
|
194 |
+
self.out_channels = out_channels
|
195 |
+
self.n_heads = n_heads
|
196 |
+
self.p_dropout = p_dropout
|
197 |
+
self.window_size = window_size
|
198 |
+
self.heads_share = heads_share
|
199 |
+
self.block_length = block_length
|
200 |
+
self.proximal_bias = proximal_bias
|
201 |
+
self.proximal_init = proximal_init
|
202 |
+
self.attn = None
|
203 |
+
|
204 |
+
self.k_channels = channels // n_heads
|
205 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
206 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
207 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
208 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
209 |
+
self.drop = nn.Dropout(p_dropout)
|
210 |
+
|
211 |
+
if window_size is not None:
|
212 |
+
n_heads_rel = 1 if heads_share else n_heads
|
213 |
+
rel_stddev = self.k_channels**-0.5
|
214 |
+
self.emb_rel_k = nn.Parameter(
|
215 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
216 |
+
* rel_stddev
|
217 |
+
)
|
218 |
+
self.emb_rel_v = nn.Parameter(
|
219 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
220 |
+
* rel_stddev
|
221 |
+
)
|
222 |
+
|
223 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
224 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
225 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
226 |
+
if proximal_init:
|
227 |
+
with torch.no_grad():
|
228 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
229 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
230 |
+
|
231 |
+
def forward(self, x, c, attn_mask=None):
|
232 |
+
q = self.conv_q(x)
|
233 |
+
k = self.conv_k(c)
|
234 |
+
v = self.conv_v(c)
|
235 |
+
|
236 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
237 |
+
|
238 |
+
x = self.conv_o(x)
|
239 |
+
return x
|
240 |
+
|
241 |
+
def attention(self, query, key, value, mask=None):
|
242 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
243 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
244 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
245 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
246 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
247 |
+
|
248 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
249 |
+
if self.window_size is not None:
|
250 |
+
assert (
|
251 |
+
t_s == t_t
|
252 |
+
), "Relative attention is only available for self-attention."
|
253 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
254 |
+
rel_logits = self._matmul_with_relative_keys(
|
255 |
+
query / math.sqrt(self.k_channels), key_relative_embeddings
|
256 |
+
)
|
257 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
258 |
+
scores = scores + scores_local
|
259 |
+
if self.proximal_bias:
|
260 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
261 |
+
scores = scores + self._attention_bias_proximal(t_s).to(
|
262 |
+
device=scores.device, dtype=scores.dtype
|
263 |
+
)
|
264 |
+
if mask is not None:
|
265 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
266 |
+
if self.block_length is not None:
|
267 |
+
assert (
|
268 |
+
t_s == t_t
|
269 |
+
), "Local attention is only available for self-attention."
|
270 |
+
block_mask = (
|
271 |
+
torch.ones_like(scores)
|
272 |
+
.triu(-self.block_length)
|
273 |
+
.tril(self.block_length)
|
274 |
+
)
|
275 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
276 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
277 |
+
p_attn = self.drop(p_attn)
|
278 |
+
output = torch.matmul(p_attn, value)
|
279 |
+
if self.window_size is not None:
|
280 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
281 |
+
value_relative_embeddings = self._get_relative_embeddings(
|
282 |
+
self.emb_rel_v, t_s
|
283 |
+
)
|
284 |
+
output = output + self._matmul_with_relative_values(
|
285 |
+
relative_weights, value_relative_embeddings
|
286 |
+
)
|
287 |
+
output = (
|
288 |
+
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
289 |
+
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
290 |
+
return output, p_attn
|
291 |
+
|
292 |
+
def _matmul_with_relative_values(self, x, y):
|
293 |
+
"""
|
294 |
+
x: [b, h, l, m]
|
295 |
+
y: [h or 1, m, d]
|
296 |
+
ret: [b, h, l, d]
|
297 |
+
"""
|
298 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
299 |
+
return ret
|
300 |
+
|
301 |
+
def _matmul_with_relative_keys(self, x, y):
|
302 |
+
"""
|
303 |
+
x: [b, h, l, d]
|
304 |
+
y: [h or 1, m, d]
|
305 |
+
ret: [b, h, l, m]
|
306 |
+
"""
|
307 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
308 |
+
return ret
|
309 |
+
|
310 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
311 |
+
max_relative_position = 2 * self.window_size + 1
|
312 |
+
# Pad first before slice to avoid using cond ops.
|
313 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
314 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
315 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
316 |
+
if pad_length > 0:
|
317 |
+
padded_relative_embeddings = F.pad(
|
318 |
+
relative_embeddings,
|
319 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
320 |
+
)
|
321 |
+
else:
|
322 |
+
padded_relative_embeddings = relative_embeddings
|
323 |
+
used_relative_embeddings = padded_relative_embeddings[
|
324 |
+
:, slice_start_position:slice_end_position
|
325 |
+
]
|
326 |
+
return used_relative_embeddings
|
327 |
+
|
328 |
+
def _relative_position_to_absolute_position(self, x):
|
329 |
+
"""
|
330 |
+
x: [b, h, l, 2*l-1]
|
331 |
+
ret: [b, h, l, l]
|
332 |
+
"""
|
333 |
+
batch, heads, length, _ = x.size()
|
334 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
335 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
336 |
+
|
337 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
338 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
339 |
+
x_flat = F.pad(
|
340 |
+
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
|
341 |
+
)
|
342 |
+
|
343 |
+
# Reshape and slice out the padded elements.
|
344 |
+
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
345 |
+
:, :, :length, length - 1 :
|
346 |
+
]
|
347 |
+
return x_final
|
348 |
+
|
349 |
+
def _absolute_position_to_relative_position(self, x):
|
350 |
+
"""
|
351 |
+
x: [b, h, l, l]
|
352 |
+
ret: [b, h, l, 2*l-1]
|
353 |
+
"""
|
354 |
+
batch, heads, length, _ = x.size()
|
355 |
+
# padd along column
|
356 |
+
x = F.pad(
|
357 |
+
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
|
358 |
+
)
|
359 |
+
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
360 |
+
# add 0's in the beginning that will skew the elements after reshape
|
361 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
362 |
+
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
363 |
+
return x_final
|
364 |
+
|
365 |
+
def _attention_bias_proximal(self, length):
|
366 |
+
"""Bias for self-attention to encourage attention to close positions.
|
367 |
+
Args:
|
368 |
+
length: an integer scalar.
|
369 |
+
Returns:
|
370 |
+
a Tensor with shape [1, 1, length, length]
|
371 |
+
"""
|
372 |
+
r = torch.arange(length, dtype=torch.float32)
|
373 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
374 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
375 |
+
|
376 |
+
|
377 |
+
class FFN(nn.Module):
|
378 |
+
def __init__(
|
379 |
+
self,
|
380 |
+
in_channels,
|
381 |
+
out_channels,
|
382 |
+
filter_channels,
|
383 |
+
kernel_size,
|
384 |
+
p_dropout=0.0,
|
385 |
+
activation=None,
|
386 |
+
causal=False,
|
387 |
+
):
|
388 |
+
super().__init__()
|
389 |
+
self.in_channels = in_channels
|
390 |
+
self.out_channels = out_channels
|
391 |
+
self.filter_channels = filter_channels
|
392 |
+
self.kernel_size = kernel_size
|
393 |
+
self.p_dropout = p_dropout
|
394 |
+
self.activation = activation
|
395 |
+
self.causal = causal
|
396 |
+
|
397 |
+
if causal:
|
398 |
+
self.padding = self._causal_padding
|
399 |
+
else:
|
400 |
+
self.padding = self._same_padding
|
401 |
+
|
402 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
403 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
404 |
+
self.drop = nn.Dropout(p_dropout)
|
405 |
+
|
406 |
+
def forward(self, x, x_mask):
|
407 |
+
x = self.conv_1(self.padding(x * x_mask))
|
408 |
+
if self.activation == "gelu":
|
409 |
+
x = x * torch.sigmoid(1.702 * x)
|
410 |
+
else:
|
411 |
+
x = torch.relu(x)
|
412 |
+
x = self.drop(x)
|
413 |
+
x = self.conv_2(self.padding(x * x_mask))
|
414 |
+
return x * x_mask
|
415 |
+
|
416 |
+
def _causal_padding(self, x):
|
417 |
+
if self.kernel_size == 1:
|
418 |
+
return x
|
419 |
+
pad_l = self.kernel_size - 1
|
420 |
+
pad_r = 0
|
421 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
422 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
423 |
+
return x
|
424 |
+
|
425 |
+
def _same_padding(self, x):
|
426 |
+
if self.kernel_size == 1:
|
427 |
+
return x
|
428 |
+
pad_l = (self.kernel_size - 1) // 2
|
429 |
+
pad_r = self.kernel_size // 2
|
430 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
431 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
432 |
+
return x
|
433 |
+
|
434 |
+
|
435 |
+
import torch.nn as nn
|
436 |
+
from torch.nn.utils import remove_weight_norm, weight_norm
|
437 |
+
|
438 |
+
|
439 |
+
class Depthwise_Separable_Conv1D(nn.Module):
|
440 |
+
def __init__(
|
441 |
+
self,
|
442 |
+
in_channels,
|
443 |
+
out_channels,
|
444 |
+
kernel_size,
|
445 |
+
stride=1,
|
446 |
+
padding=0,
|
447 |
+
dilation=1,
|
448 |
+
bias=True,
|
449 |
+
padding_mode="zeros", # TODO: refine this type
|
450 |
+
device=None,
|
451 |
+
dtype=None,
|
452 |
+
):
|
453 |
+
super().__init__()
|
454 |
+
self.depth_conv = nn.Conv1d(
|
455 |
+
in_channels=in_channels,
|
456 |
+
out_channels=in_channels,
|
457 |
+
kernel_size=kernel_size,
|
458 |
+
groups=in_channels,
|
459 |
+
stride=stride,
|
460 |
+
padding=padding,
|
461 |
+
dilation=dilation,
|
462 |
+
bias=bias,
|
463 |
+
padding_mode=padding_mode,
|
464 |
+
device=device,
|
465 |
+
dtype=dtype,
|
466 |
+
)
|
467 |
+
self.point_conv = nn.Conv1d(
|
468 |
+
in_channels=in_channels,
|
469 |
+
out_channels=out_channels,
|
470 |
+
kernel_size=1,
|
471 |
+
bias=bias,
|
472 |
+
device=device,
|
473 |
+
dtype=dtype,
|
474 |
+
)
|
475 |
+
|
476 |
+
def forward(self, input):
|
477 |
+
return self.point_conv(self.depth_conv(input))
|
478 |
+
|
479 |
+
def weight_norm(self):
|
480 |
+
self.depth_conv = weight_norm(self.depth_conv, name="weight")
|
481 |
+
self.point_conv = weight_norm(self.point_conv, name="weight")
|
482 |
+
|
483 |
+
def remove_weight_norm(self):
|
484 |
+
self.depth_conv = remove_weight_norm(self.depth_conv, name="weight")
|
485 |
+
self.point_conv = remove_weight_norm(self.point_conv, name="weight")
|
486 |
+
|
487 |
+
|
488 |
+
class Depthwise_Separable_TransposeConv1D(nn.Module):
|
489 |
+
def __init__(
|
490 |
+
self,
|
491 |
+
in_channels,
|
492 |
+
out_channels,
|
493 |
+
kernel_size,
|
494 |
+
stride=1,
|
495 |
+
padding=0,
|
496 |
+
output_padding=0,
|
497 |
+
bias=True,
|
498 |
+
dilation=1,
|
499 |
+
padding_mode="zeros", # TODO: refine this type
|
500 |
+
device=None,
|
501 |
+
dtype=None,
|
502 |
+
):
|
503 |
+
super().__init__()
|
504 |
+
self.depth_conv = nn.ConvTranspose1d(
|
505 |
+
in_channels=in_channels,
|
506 |
+
out_channels=in_channels,
|
507 |
+
kernel_size=kernel_size,
|
508 |
+
groups=in_channels,
|
509 |
+
stride=stride,
|
510 |
+
output_padding=output_padding,
|
511 |
+
padding=padding,
|
512 |
+
dilation=dilation,
|
513 |
+
bias=bias,
|
514 |
+
padding_mode=padding_mode,
|
515 |
+
device=device,
|
516 |
+
dtype=dtype,
|
517 |
+
)
|
518 |
+
self.point_conv = nn.Conv1d(
|
519 |
+
in_channels=in_channels,
|
520 |
+
out_channels=out_channels,
|
521 |
+
kernel_size=1,
|
522 |
+
bias=bias,
|
523 |
+
device=device,
|
524 |
+
dtype=dtype,
|
525 |
+
)
|
526 |
+
|
527 |
+
def forward(self, input):
|
528 |
+
return self.point_conv(self.depth_conv(input))
|
529 |
+
|
530 |
+
def weight_norm(self):
|
531 |
+
self.depth_conv = weight_norm(self.depth_conv, name="weight")
|
532 |
+
self.point_conv = weight_norm(self.point_conv, name="weight")
|
533 |
+
|
534 |
+
def remove_weight_norm(self):
|
535 |
+
remove_weight_norm(self.depth_conv, name="weight")
|
536 |
+
remove_weight_norm(self.point_conv, name="weight")
|
537 |
+
|
538 |
+
|
539 |
+
def weight_norm_modules(module, name="weight", dim=0):
|
540 |
+
if isinstance(module, Depthwise_Separable_Conv1D) or isinstance(
|
541 |
+
module, Depthwise_Separable_TransposeConv1D
|
542 |
+
):
|
543 |
+
module.weight_norm()
|
544 |
+
return module
|
545 |
+
else:
|
546 |
+
return weight_norm(module, name, dim)
|
547 |
+
|
548 |
+
|
549 |
+
def remove_weight_norm_modules(module, name="weight"):
|
550 |
+
if isinstance(module, Depthwise_Separable_Conv1D) or isinstance(
|
551 |
+
module, Depthwise_Separable_TransposeConv1D
|
552 |
+
):
|
553 |
+
module.remove_weight_norm()
|
554 |
+
else:
|
555 |
+
remove_weight_norm(module, name)
|
556 |
+
|
557 |
+
|
558 |
+
class FFT(nn.Module):
|
559 |
+
def __init__(
|
560 |
+
self,
|
561 |
+
hidden_channels,
|
562 |
+
filter_channels,
|
563 |
+
n_heads,
|
564 |
+
n_layers=1,
|
565 |
+
kernel_size=1,
|
566 |
+
p_dropout=0.0,
|
567 |
+
proximal_bias=False,
|
568 |
+
proximal_init=True,
|
569 |
+
isflow=False,
|
570 |
+
**kwargs
|
571 |
+
):
|
572 |
+
super().__init__()
|
573 |
+
self.hidden_channels = hidden_channels
|
574 |
+
self.filter_channels = filter_channels
|
575 |
+
self.n_heads = n_heads
|
576 |
+
self.n_layers = n_layers
|
577 |
+
self.kernel_size = kernel_size
|
578 |
+
self.p_dropout = p_dropout
|
579 |
+
self.proximal_bias = proximal_bias
|
580 |
+
self.proximal_init = proximal_init
|
581 |
+
if isflow:
|
582 |
+
cond_layer = torch.nn.Conv1d(
|
583 |
+
kwargs["gin_channels"], 2 * hidden_channels * n_layers, 1
|
584 |
+
)
|
585 |
+
self.cond_pre = torch.nn.Conv1d(hidden_channels, 2 * hidden_channels, 1)
|
586 |
+
self.cond_layer = weight_norm_modules(cond_layer, name="weight")
|
587 |
+
self.gin_channels = kwargs["gin_channels"]
|
588 |
+
self.drop = nn.Dropout(p_dropout)
|
589 |
+
self.self_attn_layers = nn.ModuleList()
|
590 |
+
self.norm_layers_0 = nn.ModuleList()
|
591 |
+
self.ffn_layers = nn.ModuleList()
|
592 |
+
self.norm_layers_1 = nn.ModuleList()
|
593 |
+
for i in range(self.n_layers):
|
594 |
+
self.self_attn_layers.append(
|
595 |
+
MultiHeadAttention(
|
596 |
+
hidden_channels,
|
597 |
+
hidden_channels,
|
598 |
+
n_heads,
|
599 |
+
p_dropout=p_dropout,
|
600 |
+
proximal_bias=proximal_bias,
|
601 |
+
proximal_init=proximal_init,
|
602 |
+
)
|
603 |
+
)
|
604 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
605 |
+
self.ffn_layers.append(
|
606 |
+
FFN(
|
607 |
+
hidden_channels,
|
608 |
+
hidden_channels,
|
609 |
+
filter_channels,
|
610 |
+
kernel_size,
|
611 |
+
p_dropout=p_dropout,
|
612 |
+
causal=True,
|
613 |
+
)
|
614 |
+
)
|
615 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
616 |
+
|
617 |
+
def forward(self, x, x_mask, g=None):
|
618 |
+
"""
|
619 |
+
x: decoder input
|
620 |
+
h: encoder output
|
621 |
+
"""
|
622 |
+
if g is not None:
|
623 |
+
g = self.cond_layer(g)
|
624 |
+
|
625 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
626 |
+
device=x.device, dtype=x.dtype
|
627 |
+
)
|
628 |
+
x = x * x_mask
|
629 |
+
for i in range(self.n_layers):
|
630 |
+
if g is not None:
|
631 |
+
x = self.cond_pre(x)
|
632 |
+
cond_offset = i * 2 * self.hidden_channels
|
633 |
+
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
634 |
+
x = commons.fused_add_tanh_sigmoid_multiply(
|
635 |
+
x, g_l, torch.IntTensor([self.hidden_channels])
|
636 |
+
)
|
637 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
638 |
+
y = self.drop(y)
|
639 |
+
x = self.norm_layers_0[i](x + y)
|
640 |
+
|
641 |
+
y = self.ffn_layers[i](x, x_mask)
|
642 |
+
y = self.drop(y)
|
643 |
+
x = self.norm_layers_1[i](x + y)
|
644 |
+
x = x * x_mask
|
645 |
+
return x
|
646 |
+
|
647 |
+
|
648 |
+
class TransformerCouplingLayer(nn.Module):
|
649 |
+
def __init__(
|
650 |
+
self,
|
651 |
+
channels,
|
652 |
+
hidden_channels,
|
653 |
+
kernel_size,
|
654 |
+
n_layers,
|
655 |
+
n_heads,
|
656 |
+
p_dropout=0,
|
657 |
+
filter_channels=0,
|
658 |
+
mean_only=False,
|
659 |
+
wn_sharing_parameter=None,
|
660 |
+
gin_channels=0,
|
661 |
+
):
|
662 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
663 |
+
super().__init__()
|
664 |
+
self.channels = channels
|
665 |
+
self.hidden_channels = hidden_channels
|
666 |
+
self.kernel_size = kernel_size
|
667 |
+
self.n_layers = n_layers
|
668 |
+
self.half_channels = channels // 2
|
669 |
+
self.mean_only = mean_only
|
670 |
+
|
671 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
672 |
+
self.enc = (
|
673 |
+
Encoder(
|
674 |
+
hidden_channels,
|
675 |
+
filter_channels,
|
676 |
+
n_heads,
|
677 |
+
n_layers,
|
678 |
+
kernel_size,
|
679 |
+
p_dropout,
|
680 |
+
isflow=True,
|
681 |
+
gin_channels=gin_channels,
|
682 |
+
)
|
683 |
+
if wn_sharing_parameter is None
|
684 |
+
else wn_sharing_parameter
|
685 |
+
)
|
686 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
687 |
+
self.post.weight.data.zero_()
|
688 |
+
self.post.bias.data.zero_()
|
689 |
+
|
690 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
691 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
692 |
+
h = self.pre(x0) * x_mask
|
693 |
+
h = self.enc(h, x_mask, g=g)
|
694 |
+
stats = self.post(h) * x_mask
|
695 |
+
if not self.mean_only:
|
696 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
697 |
+
else:
|
698 |
+
m = stats
|
699 |
+
logs = torch.zeros_like(m)
|
700 |
+
|
701 |
+
if not reverse:
|
702 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
703 |
+
x = torch.cat([x0, x1], 1)
|
704 |
+
logdet = torch.sum(logs, [1, 2])
|
705 |
+
return x, logdet
|
706 |
+
else:
|
707 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
708 |
+
x = torch.cat([x0, x1], 1)
|
709 |
+
return x
|
module/commons.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
|
6 |
+
def init_weights(m, mean=0.0, std=0.01):
|
7 |
+
classname = m.__class__.__name__
|
8 |
+
if classname.find("Conv") != -1:
|
9 |
+
m.weight.data.normal_(mean, std)
|
10 |
+
|
11 |
+
|
12 |
+
def get_padding(kernel_size, dilation=1):
|
13 |
+
return int((kernel_size * dilation - dilation) / 2)
|
14 |
+
|
15 |
+
|
16 |
+
def convert_pad_shape(pad_shape):
|
17 |
+
l = pad_shape[::-1]
|
18 |
+
pad_shape = [item for sublist in l for item in sublist]
|
19 |
+
return pad_shape
|
20 |
+
|
21 |
+
|
22 |
+
def intersperse(lst, item):
|
23 |
+
result = [item] * (len(lst) * 2 + 1)
|
24 |
+
result[1::2] = lst
|
25 |
+
return result
|
26 |
+
|
27 |
+
|
28 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
29 |
+
"""KL(P||Q)"""
|
30 |
+
kl = (logs_q - logs_p) - 0.5
|
31 |
+
kl += (
|
32 |
+
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
33 |
+
)
|
34 |
+
return kl
|
35 |
+
|
36 |
+
|
37 |
+
def rand_gumbel(shape):
|
38 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
39 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
40 |
+
return -torch.log(-torch.log(uniform_samples))
|
41 |
+
|
42 |
+
|
43 |
+
def rand_gumbel_like(x):
|
44 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
45 |
+
return g
|
46 |
+
|
47 |
+
|
48 |
+
def slice_segments(x, ids_str, segment_size=4):
|
49 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
50 |
+
for i in range(x.size(0)):
|
51 |
+
idx_str = ids_str[i]
|
52 |
+
idx_end = idx_str + segment_size
|
53 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
54 |
+
return ret
|
55 |
+
|
56 |
+
|
57 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
58 |
+
b, d, t = x.size()
|
59 |
+
if x_lengths is None:
|
60 |
+
x_lengths = t
|
61 |
+
ids_str_max = x_lengths - segment_size + 1
|
62 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
63 |
+
ret = slice_segments(x, ids_str, segment_size)
|
64 |
+
return ret, ids_str
|
65 |
+
|
66 |
+
|
67 |
+
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
68 |
+
position = torch.arange(length, dtype=torch.float)
|
69 |
+
num_timescales = channels // 2
|
70 |
+
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
71 |
+
num_timescales - 1
|
72 |
+
)
|
73 |
+
inv_timescales = min_timescale * torch.exp(
|
74 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
75 |
+
)
|
76 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
77 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
78 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
79 |
+
signal = signal.view(1, channels, length)
|
80 |
+
return signal
|
81 |
+
|
82 |
+
|
83 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
84 |
+
b, channels, length = x.size()
|
85 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
86 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
87 |
+
|
88 |
+
|
89 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
90 |
+
b, channels, length = x.size()
|
91 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
92 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
93 |
+
|
94 |
+
|
95 |
+
def subsequent_mask(length):
|
96 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
97 |
+
return mask
|
98 |
+
|
99 |
+
|
100 |
+
@torch.jit.script
|
101 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
102 |
+
n_channels_int = n_channels[0]
|
103 |
+
in_act = input_a + input_b
|
104 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
105 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
106 |
+
acts = t_act * s_act
|
107 |
+
return acts
|
108 |
+
|
109 |
+
|
110 |
+
def convert_pad_shape(pad_shape):
|
111 |
+
l = pad_shape[::-1]
|
112 |
+
pad_shape = [item for sublist in l for item in sublist]
|
113 |
+
return pad_shape
|
114 |
+
|
115 |
+
|
116 |
+
def shift_1d(x):
|
117 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
118 |
+
return x
|
119 |
+
|
120 |
+
|
121 |
+
def sequence_mask(length, max_length=None):
|
122 |
+
if max_length is None:
|
123 |
+
max_length = length.max()
|
124 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
125 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
126 |
+
|
127 |
+
|
128 |
+
def generate_path(duration, mask):
|
129 |
+
"""
|
130 |
+
duration: [b, 1, t_x]
|
131 |
+
mask: [b, 1, t_y, t_x]
|
132 |
+
"""
|
133 |
+
device = duration.device
|
134 |
+
|
135 |
+
b, _, t_y, t_x = mask.shape
|
136 |
+
cum_duration = torch.cumsum(duration, -1)
|
137 |
+
|
138 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
139 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
140 |
+
path = path.view(b, t_x, t_y)
|
141 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
142 |
+
path = path.unsqueeze(1).transpose(2, 3) * mask
|
143 |
+
return path
|
144 |
+
|
145 |
+
|
146 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
147 |
+
if isinstance(parameters, torch.Tensor):
|
148 |
+
parameters = [parameters]
|
149 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
150 |
+
norm_type = float(norm_type)
|
151 |
+
if clip_value is not None:
|
152 |
+
clip_value = float(clip_value)
|
153 |
+
|
154 |
+
total_norm = 0
|
155 |
+
for p in parameters:
|
156 |
+
param_norm = p.grad.data.norm(norm_type)
|
157 |
+
total_norm += param_norm.item() ** norm_type
|
158 |
+
if clip_value is not None:
|
159 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
160 |
+
total_norm = total_norm ** (1.0 / norm_type)
|
161 |
+
return total_norm
|
162 |
+
|
163 |
+
|
164 |
+
def squeeze(x, x_mask=None, n_sqz=2):
|
165 |
+
b, c, t = x.size()
|
166 |
+
|
167 |
+
t = (t // n_sqz) * n_sqz
|
168 |
+
x = x[:, :, :t]
|
169 |
+
x_sqz = x.view(b, c, t // n_sqz, n_sqz)
|
170 |
+
x_sqz = x_sqz.permute(0, 3, 1, 2).contiguous().view(b, c * n_sqz, t // n_sqz)
|
171 |
+
|
172 |
+
if x_mask is not None:
|
173 |
+
x_mask = x_mask[:, :, n_sqz - 1 :: n_sqz]
|
174 |
+
else:
|
175 |
+
x_mask = torch.ones(b, 1, t // n_sqz).to(device=x.device, dtype=x.dtype)
|
176 |
+
return x_sqz * x_mask, x_mask
|
177 |
+
|
178 |
+
|
179 |
+
def unsqueeze(x, x_mask=None, n_sqz=2):
|
180 |
+
b, c, t = x.size()
|
181 |
+
|
182 |
+
x_unsqz = x.view(b, n_sqz, c // n_sqz, t)
|
183 |
+
x_unsqz = x_unsqz.permute(0, 2, 3, 1).contiguous().view(b, c // n_sqz, t * n_sqz)
|
184 |
+
|
185 |
+
if x_mask is not None:
|
186 |
+
x_mask = x_mask.unsqueeze(-1).repeat(1, 1, 1, n_sqz).view(b, 1, t * n_sqz)
|
187 |
+
else:
|
188 |
+
x_mask = torch.ones(b, 1, t * n_sqz).to(device=x.device, dtype=x.dtype)
|
189 |
+
return x_unsqz * x_mask, x_mask
|
module/core_vq.py
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
#
|
7 |
+
# This implementation is inspired from
|
8 |
+
# https://github.com/lucidrains/vector-quantize-pytorch
|
9 |
+
# which is released under MIT License. Hereafter, the original license:
|
10 |
+
# MIT License
|
11 |
+
#
|
12 |
+
# Copyright (c) 2020 Phil Wang
|
13 |
+
#
|
14 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
15 |
+
# of this software and associated documentation files (the "Software"), to deal
|
16 |
+
# in the Software without restriction, including without limitation the rights
|
17 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
18 |
+
# copies of the Software, and to permit persons to whom the Software is
|
19 |
+
# furnished to do so, subject to the following conditions:
|
20 |
+
#
|
21 |
+
# The above copyright notice and this permission notice shall be included in all
|
22 |
+
# copies or substantial portions of the Software.
|
23 |
+
#
|
24 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
25 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
26 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
27 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
28 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
29 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
30 |
+
# SOFTWARE.
|
31 |
+
|
32 |
+
"""Core vector quantization implementation."""
|
33 |
+
import typing as tp
|
34 |
+
|
35 |
+
from einops import rearrange, repeat
|
36 |
+
import torch
|
37 |
+
from torch import nn
|
38 |
+
import torch.nn.functional as F
|
39 |
+
from tqdm import tqdm
|
40 |
+
|
41 |
+
|
42 |
+
def default(val: tp.Any, d: tp.Any) -> tp.Any:
|
43 |
+
return val if val is not None else d
|
44 |
+
|
45 |
+
|
46 |
+
def ema_inplace(moving_avg, new, decay: float):
|
47 |
+
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
|
48 |
+
|
49 |
+
|
50 |
+
def laplace_smoothing(x, n_categories: int, epsilon: float = 1e-5):
|
51 |
+
return (x + epsilon) / (x.sum() + n_categories * epsilon)
|
52 |
+
|
53 |
+
|
54 |
+
def uniform_init(*shape: int):
|
55 |
+
t = torch.empty(shape)
|
56 |
+
nn.init.kaiming_uniform_(t)
|
57 |
+
return t
|
58 |
+
|
59 |
+
|
60 |
+
def sample_vectors(samples, num: int):
|
61 |
+
num_samples, device = samples.shape[0], samples.device
|
62 |
+
|
63 |
+
if num_samples >= num:
|
64 |
+
indices = torch.randperm(num_samples, device=device)[:num]
|
65 |
+
else:
|
66 |
+
indices = torch.randint(0, num_samples, (num,), device=device)
|
67 |
+
|
68 |
+
return samples[indices]
|
69 |
+
|
70 |
+
|
71 |
+
def kmeans(samples, num_clusters: int, num_iters: int = 10):
|
72 |
+
dim, dtype = samples.shape[-1], samples.dtype
|
73 |
+
max_kmeans_samples = 500
|
74 |
+
samples = samples[:max_kmeans_samples, :]
|
75 |
+
means = sample_vectors(samples, num_clusters)
|
76 |
+
|
77 |
+
print("kmeans start ... ")
|
78 |
+
for _ in tqdm(range(num_iters)):
|
79 |
+
diffs = rearrange(samples, "n d -> n () d") - rearrange(means, "c d -> () c d")
|
80 |
+
dists = -(diffs**2).sum(dim=-1)
|
81 |
+
|
82 |
+
buckets = dists.max(dim=-1).indices
|
83 |
+
bins = torch.bincount(buckets, minlength=num_clusters)
|
84 |
+
zero_mask = bins == 0
|
85 |
+
bins_min_clamped = bins.masked_fill(zero_mask, 1)
|
86 |
+
|
87 |
+
new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype)
|
88 |
+
new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=dim), samples)
|
89 |
+
new_means = new_means / bins_min_clamped[..., None]
|
90 |
+
|
91 |
+
means = torch.where(zero_mask[..., None], means, new_means)
|
92 |
+
|
93 |
+
return means, bins
|
94 |
+
|
95 |
+
|
96 |
+
class EuclideanCodebook(nn.Module):
|
97 |
+
"""Codebook with Euclidean distance.
|
98 |
+
Args:
|
99 |
+
dim (int): Dimension.
|
100 |
+
codebook_size (int): Codebook size.
|
101 |
+
kmeans_init (bool): Whether to use k-means to initialize the codebooks.
|
102 |
+
If set to true, run the k-means algorithm on the first training batch and use
|
103 |
+
the learned centroids as initialization.
|
104 |
+
kmeans_iters (int): Number of iterations used for k-means algorithm at initialization.
|
105 |
+
decay (float): Decay for exponential moving average over the codebooks.
|
106 |
+
epsilon (float): Epsilon value for numerical stability.
|
107 |
+
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
|
108 |
+
that have an exponential moving average cluster size less than the specified threshold with
|
109 |
+
randomly selected vector from the current batch.
|
110 |
+
"""
|
111 |
+
|
112 |
+
def __init__(
|
113 |
+
self,
|
114 |
+
dim: int,
|
115 |
+
codebook_size: int,
|
116 |
+
kmeans_init: int = False,
|
117 |
+
kmeans_iters: int = 10,
|
118 |
+
decay: float = 0.99,
|
119 |
+
epsilon: float = 1e-5,
|
120 |
+
threshold_ema_dead_code: int = 2,
|
121 |
+
):
|
122 |
+
super().__init__()
|
123 |
+
self.decay = decay
|
124 |
+
init_fn: tp.Union[tp.Callable[..., torch.Tensor], tp.Any] = (
|
125 |
+
uniform_init if not kmeans_init else torch.zeros
|
126 |
+
)
|
127 |
+
embed = init_fn(codebook_size, dim)
|
128 |
+
|
129 |
+
self.codebook_size = codebook_size
|
130 |
+
|
131 |
+
self.kmeans_iters = kmeans_iters
|
132 |
+
self.epsilon = epsilon
|
133 |
+
self.threshold_ema_dead_code = threshold_ema_dead_code
|
134 |
+
|
135 |
+
self.register_buffer("inited", torch.Tensor([not kmeans_init]))
|
136 |
+
self.register_buffer("cluster_size", torch.zeros(codebook_size))
|
137 |
+
self.register_buffer("embed", embed)
|
138 |
+
self.register_buffer("embed_avg", embed.clone())
|
139 |
+
|
140 |
+
@torch.jit.ignore
|
141 |
+
def init_embed_(self, data):
|
142 |
+
if self.inited:
|
143 |
+
return
|
144 |
+
|
145 |
+
embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters)
|
146 |
+
self.embed.data.copy_(embed)
|
147 |
+
self.embed_avg.data.copy_(embed.clone())
|
148 |
+
self.cluster_size.data.copy_(cluster_size)
|
149 |
+
self.inited.data.copy_(torch.Tensor([True]))
|
150 |
+
# Make sure all buffers across workers are in sync after initialization
|
151 |
+
# broadcast_tensors(self.buffers())
|
152 |
+
|
153 |
+
def replace_(self, samples, mask):
|
154 |
+
modified_codebook = torch.where(
|
155 |
+
mask[..., None], sample_vectors(samples, self.codebook_size), self.embed
|
156 |
+
)
|
157 |
+
self.embed.data.copy_(modified_codebook)
|
158 |
+
|
159 |
+
def expire_codes_(self, batch_samples):
|
160 |
+
if self.threshold_ema_dead_code == 0:
|
161 |
+
return
|
162 |
+
|
163 |
+
expired_codes = self.cluster_size < self.threshold_ema_dead_code
|
164 |
+
if not torch.any(expired_codes):
|
165 |
+
return
|
166 |
+
|
167 |
+
batch_samples = rearrange(batch_samples, "... d -> (...) d")
|
168 |
+
self.replace_(batch_samples, mask=expired_codes)
|
169 |
+
# broadcast_tensors(self.buffers())
|
170 |
+
|
171 |
+
def preprocess(self, x):
|
172 |
+
x = rearrange(x, "... d -> (...) d")
|
173 |
+
return x
|
174 |
+
|
175 |
+
def quantize(self, x):
|
176 |
+
embed = self.embed.t()
|
177 |
+
dist = -(
|
178 |
+
x.pow(2).sum(1, keepdim=True)
|
179 |
+
- 2 * x @ embed
|
180 |
+
+ embed.pow(2).sum(0, keepdim=True)
|
181 |
+
)
|
182 |
+
embed_ind = dist.max(dim=-1).indices
|
183 |
+
return embed_ind
|
184 |
+
|
185 |
+
def postprocess_emb(self, embed_ind, shape):
|
186 |
+
return embed_ind.view(*shape[:-1])
|
187 |
+
|
188 |
+
def dequantize(self, embed_ind):
|
189 |
+
quantize = F.embedding(embed_ind, self.embed)
|
190 |
+
return quantize
|
191 |
+
|
192 |
+
def encode(self, x):
|
193 |
+
shape = x.shape
|
194 |
+
# pre-process
|
195 |
+
x = self.preprocess(x)
|
196 |
+
# quantize
|
197 |
+
embed_ind = self.quantize(x)
|
198 |
+
# post-process
|
199 |
+
embed_ind = self.postprocess_emb(embed_ind, shape)
|
200 |
+
return embed_ind
|
201 |
+
|
202 |
+
def decode(self, embed_ind):
|
203 |
+
quantize = self.dequantize(embed_ind)
|
204 |
+
return quantize
|
205 |
+
|
206 |
+
def forward(self, x):
|
207 |
+
shape, dtype = x.shape, x.dtype
|
208 |
+
x = self.preprocess(x)
|
209 |
+
|
210 |
+
self.init_embed_(x)
|
211 |
+
|
212 |
+
embed_ind = self.quantize(x)
|
213 |
+
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
|
214 |
+
embed_ind = self.postprocess_emb(embed_ind, shape)
|
215 |
+
quantize = self.dequantize(embed_ind)
|
216 |
+
|
217 |
+
if self.training:
|
218 |
+
# We do the expiry of code at that point as buffers are in sync
|
219 |
+
# and all the workers will take the same decision.
|
220 |
+
self.expire_codes_(x)
|
221 |
+
ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay)
|
222 |
+
embed_sum = x.t() @ embed_onehot
|
223 |
+
ema_inplace(self.embed_avg, embed_sum.t(), self.decay)
|
224 |
+
cluster_size = (
|
225 |
+
laplace_smoothing(self.cluster_size, self.codebook_size, self.epsilon)
|
226 |
+
* self.cluster_size.sum()
|
227 |
+
)
|
228 |
+
embed_normalized = self.embed_avg / cluster_size.unsqueeze(1)
|
229 |
+
self.embed.data.copy_(embed_normalized)
|
230 |
+
|
231 |
+
return quantize, embed_ind
|
232 |
+
|
233 |
+
|
234 |
+
class VectorQuantization(nn.Module):
|
235 |
+
"""Vector quantization implementation.
|
236 |
+
Currently supports only euclidean distance.
|
237 |
+
Args:
|
238 |
+
dim (int): Dimension
|
239 |
+
codebook_size (int): Codebook size
|
240 |
+
codebook_dim (int): Codebook dimension. If not defined, uses the specified dimension in dim.
|
241 |
+
decay (float): Decay for exponential moving average over the codebooks.
|
242 |
+
epsilon (float): Epsilon value for numerical stability.
|
243 |
+
kmeans_init (bool): Whether to use kmeans to initialize the codebooks.
|
244 |
+
kmeans_iters (int): Number of iterations used for kmeans initialization.
|
245 |
+
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
|
246 |
+
that have an exponential moving average cluster size less than the specified threshold with
|
247 |
+
randomly selected vector from the current batch.
|
248 |
+
commitment_weight (float): Weight for commitment loss.
|
249 |
+
"""
|
250 |
+
|
251 |
+
def __init__(
|
252 |
+
self,
|
253 |
+
dim: int,
|
254 |
+
codebook_size: int,
|
255 |
+
codebook_dim: tp.Optional[int] = None,
|
256 |
+
decay: float = 0.99,
|
257 |
+
epsilon: float = 1e-5,
|
258 |
+
kmeans_init: bool = True,
|
259 |
+
kmeans_iters: int = 50,
|
260 |
+
threshold_ema_dead_code: int = 2,
|
261 |
+
commitment_weight: float = 1.0,
|
262 |
+
):
|
263 |
+
super().__init__()
|
264 |
+
_codebook_dim: int = default(codebook_dim, dim)
|
265 |
+
|
266 |
+
requires_projection = _codebook_dim != dim
|
267 |
+
self.project_in = (
|
268 |
+
nn.Linear(dim, _codebook_dim) if requires_projection else nn.Identity()
|
269 |
+
)
|
270 |
+
self.project_out = (
|
271 |
+
nn.Linear(_codebook_dim, dim) if requires_projection else nn.Identity()
|
272 |
+
)
|
273 |
+
|
274 |
+
self.epsilon = epsilon
|
275 |
+
self.commitment_weight = commitment_weight
|
276 |
+
|
277 |
+
self._codebook = EuclideanCodebook(
|
278 |
+
dim=_codebook_dim,
|
279 |
+
codebook_size=codebook_size,
|
280 |
+
kmeans_init=kmeans_init,
|
281 |
+
kmeans_iters=kmeans_iters,
|
282 |
+
decay=decay,
|
283 |
+
epsilon=epsilon,
|
284 |
+
threshold_ema_dead_code=threshold_ema_dead_code,
|
285 |
+
)
|
286 |
+
self.codebook_size = codebook_size
|
287 |
+
|
288 |
+
@property
|
289 |
+
def codebook(self):
|
290 |
+
return self._codebook.embed
|
291 |
+
|
292 |
+
def encode(self, x):
|
293 |
+
x = rearrange(x, "b d n -> b n d")
|
294 |
+
x = self.project_in(x)
|
295 |
+
embed_in = self._codebook.encode(x)
|
296 |
+
return embed_in
|
297 |
+
|
298 |
+
def decode(self, embed_ind):
|
299 |
+
quantize = self._codebook.decode(embed_ind)
|
300 |
+
quantize = self.project_out(quantize)
|
301 |
+
quantize = rearrange(quantize, "b n d -> b d n")
|
302 |
+
return quantize
|
303 |
+
|
304 |
+
def forward(self, x):
|
305 |
+
device = x.device
|
306 |
+
x = rearrange(x, "b d n -> b n d")
|
307 |
+
x = self.project_in(x)
|
308 |
+
|
309 |
+
quantize, embed_ind = self._codebook(x)
|
310 |
+
|
311 |
+
if self.training:
|
312 |
+
quantize = x + (quantize - x).detach()
|
313 |
+
|
314 |
+
loss = torch.tensor([0.0], device=device, requires_grad=self.training)
|
315 |
+
|
316 |
+
if self.training:
|
317 |
+
if self.commitment_weight > 0:
|
318 |
+
commit_loss = F.mse_loss(quantize.detach(), x)
|
319 |
+
loss = loss + commit_loss * self.commitment_weight
|
320 |
+
|
321 |
+
quantize = self.project_out(quantize)
|
322 |
+
quantize = rearrange(quantize, "b n d -> b d n")
|
323 |
+
return quantize, embed_ind, loss
|
324 |
+
|
325 |
+
|
326 |
+
class ResidualVectorQuantization(nn.Module):
|
327 |
+
"""Residual vector quantization implementation.
|
328 |
+
Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf
|
329 |
+
"""
|
330 |
+
|
331 |
+
def __init__(self, *, num_quantizers, **kwargs):
|
332 |
+
super().__init__()
|
333 |
+
self.layers = nn.ModuleList(
|
334 |
+
[VectorQuantization(**kwargs) for _ in range(num_quantizers)]
|
335 |
+
)
|
336 |
+
|
337 |
+
def forward(
|
338 |
+
self, x, n_q: tp.Optional[int] = None, layers: tp.Optional[list] = None
|
339 |
+
):
|
340 |
+
quantized_out = 0.0
|
341 |
+
residual = x
|
342 |
+
|
343 |
+
all_losses = []
|
344 |
+
all_indices = []
|
345 |
+
out_quantized = []
|
346 |
+
|
347 |
+
n_q = n_q or len(self.layers)
|
348 |
+
|
349 |
+
for i, layer in enumerate(self.layers[:n_q]):
|
350 |
+
quantized, indices, loss = layer(residual)
|
351 |
+
residual = residual - quantized
|
352 |
+
quantized_out = quantized_out + quantized
|
353 |
+
|
354 |
+
all_indices.append(indices)
|
355 |
+
all_losses.append(loss)
|
356 |
+
if layers and i in layers:
|
357 |
+
out_quantized.append(quantized)
|
358 |
+
|
359 |
+
out_losses, out_indices = map(torch.stack, (all_losses, all_indices))
|
360 |
+
return quantized_out, out_indices, out_losses, out_quantized
|
361 |
+
|
362 |
+
def encode(
|
363 |
+
self, x: torch.Tensor, n_q: tp.Optional[int] = None, st: tp.Optional[int] = None
|
364 |
+
) -> torch.Tensor:
|
365 |
+
residual = x
|
366 |
+
all_indices = []
|
367 |
+
n_q = n_q or len(self.layers)
|
368 |
+
st = st or 0
|
369 |
+
for layer in self.layers[st:n_q]:
|
370 |
+
indices = layer.encode(residual)
|
371 |
+
quantized = layer.decode(indices)
|
372 |
+
residual = residual - quantized
|
373 |
+
all_indices.append(indices)
|
374 |
+
out_indices = torch.stack(all_indices)
|
375 |
+
return out_indices
|
376 |
+
|
377 |
+
def decode(self, q_indices: torch.Tensor, st: int = 0) -> torch.Tensor:
|
378 |
+
quantized_out = torch.tensor(0.0, device=q_indices.device)
|
379 |
+
for i, indices in enumerate(q_indices):
|
380 |
+
layer = self.layers[st + i]
|
381 |
+
quantized = layer.decode(indices)
|
382 |
+
quantized_out = quantized_out + quantized
|
383 |
+
return quantized_out
|
module/data_utils.py
ADDED
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time, logging
|
2 |
+
import os
|
3 |
+
import random, traceback
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.utils.data
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
from module import commons
|
10 |
+
from module.mel_processing import spectrogram_torch
|
11 |
+
from text import cleaned_text_to_sequence
|
12 |
+
from utils import load_wav_to_torch, load_filepaths_and_text
|
13 |
+
import torch.nn.functional as F
|
14 |
+
from functools import lru_cache
|
15 |
+
import torch
|
16 |
+
import requests
|
17 |
+
from scipy.io import wavfile
|
18 |
+
from io import BytesIO
|
19 |
+
|
20 |
+
# from config import exp_dir
|
21 |
+
from my_utils import load_audio
|
22 |
+
|
23 |
+
|
24 |
+
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
25 |
+
"""
|
26 |
+
1) loads audio, speaker_id, text pairs
|
27 |
+
2) normalizes text and converts them to sequences of integers
|
28 |
+
3) computes spectrograms from audio files.
|
29 |
+
"""
|
30 |
+
|
31 |
+
def __init__(self, hparams, val=False):
|
32 |
+
exp_dir = hparams.exp_dir
|
33 |
+
self.path2 = "%s/2-name2text.txt" % exp_dir
|
34 |
+
self.path4 = "%s/4-cnhubert" % exp_dir
|
35 |
+
self.path5 = "%s/5-wav32k" % exp_dir
|
36 |
+
assert os.path.exists(self.path2)
|
37 |
+
assert os.path.exists(self.path4)
|
38 |
+
assert os.path.exists(self.path5)
|
39 |
+
names4 = set([name[:-3] for name in list(os.listdir(self.path4))]) # 去除.pt后缀
|
40 |
+
names5 = set(os.listdir(self.path5))
|
41 |
+
self.phoneme_data = {}
|
42 |
+
with open(self.path2, "r", encoding="utf8") as f:
|
43 |
+
lines = f.read().strip("\n").split("\n")
|
44 |
+
|
45 |
+
for line in lines:
|
46 |
+
tmp = line.split("\t")
|
47 |
+
if len(tmp) != 4:
|
48 |
+
continue
|
49 |
+
self.phoneme_data[tmp[0]] = [tmp[1]]
|
50 |
+
|
51 |
+
self.audiopaths_sid_text = list(set(self.phoneme_data) & names4 & names5)
|
52 |
+
tmp = self.audiopaths_sid_text
|
53 |
+
leng = len(tmp)
|
54 |
+
min_num = 100
|
55 |
+
if leng < min_num:
|
56 |
+
self.audiopaths_sid_text = []
|
57 |
+
for _ in range(max(2, int(min_num / leng))):
|
58 |
+
self.audiopaths_sid_text += tmp
|
59 |
+
self.max_wav_value = hparams.max_wav_value
|
60 |
+
self.sampling_rate = hparams.sampling_rate
|
61 |
+
self.filter_length = hparams.filter_length
|
62 |
+
self.hop_length = hparams.hop_length
|
63 |
+
self.win_length = hparams.win_length
|
64 |
+
self.sampling_rate = hparams.sampling_rate
|
65 |
+
self.val = val
|
66 |
+
|
67 |
+
random.seed(1234)
|
68 |
+
random.shuffle(self.audiopaths_sid_text)
|
69 |
+
|
70 |
+
print("phoneme_data_len:", len(self.phoneme_data.keys()))
|
71 |
+
print("wav_data_len:", len(self.audiopaths_sid_text))
|
72 |
+
|
73 |
+
audiopaths_sid_text_new = []
|
74 |
+
lengths = []
|
75 |
+
skipped_phone = 0
|
76 |
+
skipped_dur = 0
|
77 |
+
for audiopath in tqdm(self.audiopaths_sid_text):
|
78 |
+
try:
|
79 |
+
phoneme = self.phoneme_data[audiopath][0]
|
80 |
+
phoneme = phoneme.split(" ")
|
81 |
+
phoneme_ids = cleaned_text_to_sequence(phoneme)
|
82 |
+
except Exception:
|
83 |
+
print(f"{audiopath} not in self.phoneme_data !")
|
84 |
+
skipped_phone += 1
|
85 |
+
continue
|
86 |
+
size = os.path.getsize("%s/%s" % (self.path5, audiopath))
|
87 |
+
duration = size / self.sampling_rate / 2
|
88 |
+
if 54 > duration > 0.6 or self.val:
|
89 |
+
audiopaths_sid_text_new.append([audiopath, phoneme_ids])
|
90 |
+
lengths.append(size // (2 * self.hop_length))
|
91 |
+
else:
|
92 |
+
skipped_dur += 1
|
93 |
+
continue
|
94 |
+
print("skipped_phone: ", skipped_phone, ", skipped_dur: ", skipped_dur)
|
95 |
+
print("total left: ", len(audiopaths_sid_text_new))
|
96 |
+
assert len(audiopaths_sid_text_new) > 1 # 至少能凑够batch size,这里todo
|
97 |
+
self.audiopaths_sid_text = audiopaths_sid_text_new
|
98 |
+
self.lengths = lengths
|
99 |
+
|
100 |
+
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
101 |
+
audiopath, phoneme_ids = audiopath_sid_text
|
102 |
+
text = torch.FloatTensor(phoneme_ids)
|
103 |
+
try:
|
104 |
+
spec, wav = self.get_audio("%s/%s" % (self.path5, audiopath))
|
105 |
+
with torch.no_grad():
|
106 |
+
ssl = torch.load(
|
107 |
+
"%s/%s.pt" % (self.path4, audiopath), map_location="cpu"
|
108 |
+
)
|
109 |
+
if ssl.shape[-1] != spec.shape[-1]:
|
110 |
+
typee = ssl.dtype
|
111 |
+
ssl = F.pad(ssl.float(), (0, 1), mode="replicate").to(typee)
|
112 |
+
ssl.requires_grad = False
|
113 |
+
except:
|
114 |
+
traceback.print_exc()
|
115 |
+
spec = torch.zeros(1025, 100)
|
116 |
+
wav = torch.zeros(1, 100 * self.hop_length)
|
117 |
+
ssl = torch.zeros(1, 768, 100)
|
118 |
+
text = text[-1:]
|
119 |
+
print("load audio or ssl error!!!!!!", audiopath)
|
120 |
+
# print(ssl.requires_grad,spec.requires_grad,wav.requires_grad,text.requires_grad)
|
121 |
+
return (ssl, spec, wav, text)
|
122 |
+
|
123 |
+
def get_audio(self, filename):
|
124 |
+
audio_array = load_audio(
|
125 |
+
filename, self.sampling_rate
|
126 |
+
) # load_audio的方法是已经归一化到-1~1之间的,不用再/32768
|
127 |
+
# print(filename,audio_array.max(),audio_array.min(),audio_array.mean())
|
128 |
+
audio = torch.FloatTensor(audio_array) # /32768
|
129 |
+
audio_norm = audio
|
130 |
+
audio_norm = audio_norm.unsqueeze(0)
|
131 |
+
spec = spectrogram_torch(
|
132 |
+
audio_norm,
|
133 |
+
self.filter_length,
|
134 |
+
self.sampling_rate,
|
135 |
+
self.hop_length,
|
136 |
+
self.win_length,
|
137 |
+
center=False,
|
138 |
+
)
|
139 |
+
spec = torch.squeeze(spec, 0)
|
140 |
+
return spec, audio_norm
|
141 |
+
|
142 |
+
def get_sid(self, sid):
|
143 |
+
sid = torch.LongTensor([int(sid)])
|
144 |
+
return sid
|
145 |
+
|
146 |
+
def __getitem__(self, index):
|
147 |
+
# with torch.no_grad():
|
148 |
+
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
149 |
+
|
150 |
+
def __len__(self):
|
151 |
+
return len(self.audiopaths_sid_text)
|
152 |
+
|
153 |
+
def random_slice(self, ssl, wav, mel):
|
154 |
+
assert abs(ssl.shape[-1] - wav.shape[-1] // self.hop_length) < 3, (
|
155 |
+
"first",
|
156 |
+
ssl.shape,
|
157 |
+
wav.shape,
|
158 |
+
)
|
159 |
+
|
160 |
+
len_mel = mel.shape[1]
|
161 |
+
if self.val:
|
162 |
+
reference_mel = mel[:, : len_mel // 3]
|
163 |
+
return reference_mel, ssl, wav, mel
|
164 |
+
dir = random.randint(0, 1)
|
165 |
+
sep_point = random.randint(int(len_mel // 3), int(len_mel // 3 * 2))
|
166 |
+
|
167 |
+
if dir == 0:
|
168 |
+
reference_mel = mel[:, :sep_point]
|
169 |
+
ssl = ssl[:, :, sep_point:]
|
170 |
+
wav2 = wav[:, sep_point * self.hop_length :]
|
171 |
+
mel = mel[:, sep_point:]
|
172 |
+
else:
|
173 |
+
reference_mel = mel[:, sep_point:]
|
174 |
+
ssl = ssl[:, :, :sep_point]
|
175 |
+
wav2 = wav[:, : sep_point * self.hop_length]
|
176 |
+
mel = mel[:, :sep_point]
|
177 |
+
|
178 |
+
assert abs(ssl.shape[-1] - wav2.shape[-1] // self.hop_length) < 3, (
|
179 |
+
ssl.shape,
|
180 |
+
wav.shape,
|
181 |
+
wav2.shape,
|
182 |
+
mel.shape,
|
183 |
+
sep_point,
|
184 |
+
self.hop_length,
|
185 |
+
sep_point * self.hop_length,
|
186 |
+
dir,
|
187 |
+
)
|
188 |
+
return reference_mel, ssl, wav2, mel
|
189 |
+
|
190 |
+
|
191 |
+
class TextAudioSpeakerCollate:
|
192 |
+
"""Zero-pads model inputs and targets"""
|
193 |
+
|
194 |
+
def __init__(self, return_ids=False):
|
195 |
+
self.return_ids = return_ids
|
196 |
+
|
197 |
+
def __call__(self, batch):
|
198 |
+
"""Collate's training batch from normalized text, audio and speaker identities
|
199 |
+
PARAMS
|
200 |
+
------
|
201 |
+
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
202 |
+
"""
|
203 |
+
# Right zero-pad all one-hot text sequences to max input length
|
204 |
+
_, ids_sorted_decreasing = torch.sort(
|
205 |
+
torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True
|
206 |
+
)
|
207 |
+
|
208 |
+
max_ssl_len = max([x[0].size(2) for x in batch])
|
209 |
+
max_ssl_len = int(2 * ((max_ssl_len // 2) + 1))
|
210 |
+
max_spec_len = max([x[1].size(1) for x in batch])
|
211 |
+
max_spec_len = int(2 * ((max_spec_len // 2) + 1))
|
212 |
+
max_wav_len = max([x[2].size(1) for x in batch])
|
213 |
+
max_text_len = max([x[3].size(0) for x in batch])
|
214 |
+
|
215 |
+
ssl_lengths = torch.LongTensor(len(batch))
|
216 |
+
spec_lengths = torch.LongTensor(len(batch))
|
217 |
+
wav_lengths = torch.LongTensor(len(batch))
|
218 |
+
text_lengths = torch.LongTensor(len(batch))
|
219 |
+
|
220 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
221 |
+
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
222 |
+
ssl_padded = torch.FloatTensor(len(batch), batch[0][0].size(1), max_ssl_len)
|
223 |
+
text_padded = torch.LongTensor(len(batch), max_text_len)
|
224 |
+
|
225 |
+
spec_padded.zero_()
|
226 |
+
wav_padded.zero_()
|
227 |
+
ssl_padded.zero_()
|
228 |
+
text_padded.zero_()
|
229 |
+
|
230 |
+
for i in range(len(ids_sorted_decreasing)):
|
231 |
+
row = batch[ids_sorted_decreasing[i]]
|
232 |
+
|
233 |
+
ssl = row[0]
|
234 |
+
ssl_padded[i, :, : ssl.size(2)] = ssl[0, :, :]
|
235 |
+
ssl_lengths[i] = ssl.size(2)
|
236 |
+
|
237 |
+
spec = row[1]
|
238 |
+
spec_padded[i, :, : spec.size(1)] = spec
|
239 |
+
spec_lengths[i] = spec.size(1)
|
240 |
+
|
241 |
+
wav = row[2]
|
242 |
+
wav_padded[i, :, : wav.size(1)] = wav
|
243 |
+
wav_lengths[i] = wav.size(1)
|
244 |
+
|
245 |
+
text = row[3]
|
246 |
+
text_padded[i, : text.size(0)] = text
|
247 |
+
text_lengths[i] = text.size(0)
|
248 |
+
|
249 |
+
return (
|
250 |
+
ssl_padded,
|
251 |
+
ssl_lengths,
|
252 |
+
spec_padded,
|
253 |
+
spec_lengths,
|
254 |
+
wav_padded,
|
255 |
+
wav_lengths,
|
256 |
+
text_padded,
|
257 |
+
text_lengths,
|
258 |
+
)
|
259 |
+
|
260 |
+
|
261 |
+
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
262 |
+
"""
|
263 |
+
Maintain similar input lengths in a batch.
|
264 |
+
Length groups are specified by boundaries.
|
265 |
+
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
266 |
+
|
267 |
+
It removes samples which are not included in the boundaries.
|
268 |
+
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
269 |
+
"""
|
270 |
+
|
271 |
+
def __init__(
|
272 |
+
self,
|
273 |
+
dataset,
|
274 |
+
batch_size,
|
275 |
+
boundaries,
|
276 |
+
num_replicas=None,
|
277 |
+
rank=None,
|
278 |
+
shuffle=True,
|
279 |
+
):
|
280 |
+
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
281 |
+
self.lengths = dataset.lengths
|
282 |
+
# print(233333333333333,self.lengths,dir(dataset))
|
283 |
+
self.batch_size = batch_size
|
284 |
+
self.boundaries = boundaries
|
285 |
+
|
286 |
+
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
287 |
+
self.total_size = sum(self.num_samples_per_bucket)
|
288 |
+
self.num_samples = self.total_size // self.num_replicas
|
289 |
+
|
290 |
+
def _create_buckets(self):
|
291 |
+
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
292 |
+
for i in range(len(self.lengths)):
|
293 |
+
length = self.lengths[i]
|
294 |
+
idx_bucket = self._bisect(length)
|
295 |
+
if idx_bucket != -1:
|
296 |
+
buckets[idx_bucket].append(i)
|
297 |
+
|
298 |
+
for i in range(len(buckets) - 1, 0, -1):
|
299 |
+
# for i in range(len(buckets) - 1, -1, -1):
|
300 |
+
if len(buckets[i]) == 0:
|
301 |
+
buckets.pop(i)
|
302 |
+
self.boundaries.pop(i + 1)
|
303 |
+
|
304 |
+
num_samples_per_bucket = []
|
305 |
+
for i in range(len(buckets)):
|
306 |
+
len_bucket = len(buckets[i])
|
307 |
+
total_batch_size = self.num_replicas * self.batch_size
|
308 |
+
rem = (
|
309 |
+
total_batch_size - (len_bucket % total_batch_size)
|
310 |
+
) % total_batch_size
|
311 |
+
num_samples_per_bucket.append(len_bucket + rem)
|
312 |
+
return buckets, num_samples_per_bucket
|
313 |
+
|
314 |
+
def __iter__(self):
|
315 |
+
# deterministically shuffle based on epoch
|
316 |
+
g = torch.Generator()
|
317 |
+
g.manual_seed(self.epoch)
|
318 |
+
|
319 |
+
indices = []
|
320 |
+
if self.shuffle:
|
321 |
+
for bucket in self.buckets:
|
322 |
+
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
323 |
+
else:
|
324 |
+
for bucket in self.buckets:
|
325 |
+
indices.append(list(range(len(bucket))))
|
326 |
+
|
327 |
+
batches = []
|
328 |
+
for i in range(len(self.buckets)):
|
329 |
+
bucket = self.buckets[i]
|
330 |
+
len_bucket = len(bucket)
|
331 |
+
ids_bucket = indices[i]
|
332 |
+
num_samples_bucket = self.num_samples_per_bucket[i]
|
333 |
+
|
334 |
+
# add extra samples to make it evenly divisible
|
335 |
+
rem = num_samples_bucket - len_bucket
|
336 |
+
ids_bucket = (
|
337 |
+
ids_bucket
|
338 |
+
+ ids_bucket * (rem // len_bucket)
|
339 |
+
+ ids_bucket[: (rem % len_bucket)]
|
340 |
+
)
|
341 |
+
|
342 |
+
# subsample
|
343 |
+
ids_bucket = ids_bucket[self.rank :: self.num_replicas]
|
344 |
+
|
345 |
+
# batching
|
346 |
+
for j in range(len(ids_bucket) // self.batch_size):
|
347 |
+
batch = [
|
348 |
+
bucket[idx]
|
349 |
+
for idx in ids_bucket[
|
350 |
+
j * self.batch_size : (j + 1) * self.batch_size
|
351 |
+
]
|
352 |
+
]
|
353 |
+
batches.append(batch)
|
354 |
+
|
355 |
+
if self.shuffle:
|
356 |
+
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
357 |
+
batches = [batches[i] for i in batch_ids]
|
358 |
+
self.batches = batches
|
359 |
+
|
360 |
+
assert len(self.batches) * self.batch_size == self.num_samples
|
361 |
+
return iter(self.batches)
|
362 |
+
|
363 |
+
def _bisect(self, x, lo=0, hi=None):
|
364 |
+
if hi is None:
|
365 |
+
hi = len(self.boundaries) - 1
|
366 |
+
|
367 |
+
if hi > lo:
|
368 |
+
mid = (hi + lo) // 2
|
369 |
+
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
|
370 |
+
return mid
|
371 |
+
elif x <= self.boundaries[mid]:
|
372 |
+
return self._bisect(x, lo, mid)
|
373 |
+
else:
|
374 |
+
return self._bisect(x, mid + 1, hi)
|
375 |
+
else:
|
376 |
+
return -1
|
377 |
+
|
378 |
+
def __len__(self):
|
379 |
+
return self.num_samples // self.batch_size
|
module/losses.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
|
7 |
+
def feature_loss(fmap_r, fmap_g):
|
8 |
+
loss = 0
|
9 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
10 |
+
for rl, gl in zip(dr, dg):
|
11 |
+
rl = rl.float().detach()
|
12 |
+
gl = gl.float()
|
13 |
+
loss += torch.mean(torch.abs(rl - gl))
|
14 |
+
|
15 |
+
return loss * 2
|
16 |
+
|
17 |
+
|
18 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
19 |
+
loss = 0
|
20 |
+
r_losses = []
|
21 |
+
g_losses = []
|
22 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
23 |
+
dr = dr.float()
|
24 |
+
dg = dg.float()
|
25 |
+
r_loss = torch.mean((1 - dr) ** 2)
|
26 |
+
g_loss = torch.mean(dg**2)
|
27 |
+
loss += r_loss + g_loss
|
28 |
+
r_losses.append(r_loss.item())
|
29 |
+
g_losses.append(g_loss.item())
|
30 |
+
|
31 |
+
return loss, r_losses, g_losses
|
32 |
+
|
33 |
+
|
34 |
+
def generator_loss(disc_outputs):
|
35 |
+
loss = 0
|
36 |
+
gen_losses = []
|
37 |
+
for dg in disc_outputs:
|
38 |
+
dg = dg.float()
|
39 |
+
l = torch.mean((1 - dg) ** 2)
|
40 |
+
gen_losses.append(l)
|
41 |
+
loss += l
|
42 |
+
|
43 |
+
return loss, gen_losses
|
44 |
+
|
45 |
+
|
46 |
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
47 |
+
"""
|
48 |
+
z_p, logs_q: [b, h, t_t]
|
49 |
+
m_p, logs_p: [b, h, t_t]
|
50 |
+
"""
|
51 |
+
z_p = z_p.float()
|
52 |
+
logs_q = logs_q.float()
|
53 |
+
m_p = m_p.float()
|
54 |
+
logs_p = logs_p.float()
|
55 |
+
z_mask = z_mask.float()
|
56 |
+
|
57 |
+
kl = logs_p - logs_q - 0.5
|
58 |
+
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
|
59 |
+
kl = torch.sum(kl * z_mask)
|
60 |
+
l = kl / torch.sum(z_mask)
|
61 |
+
return l
|
62 |
+
|
63 |
+
|
64 |
+
def mle_loss(z, m, logs, logdet, mask):
|
65 |
+
l = torch.sum(logs) + 0.5 * torch.sum(
|
66 |
+
torch.exp(-2 * logs) * ((z - m) ** 2)
|
67 |
+
) # neg normal likelihood w/o the constant term
|
68 |
+
l = l - torch.sum(logdet) # log jacobian determinant
|
69 |
+
l = l / torch.sum(
|
70 |
+
torch.ones_like(z) * mask
|
71 |
+
) # averaging across batch, channel and time axes
|
72 |
+
l = l + 0.5 * math.log(2 * math.pi) # add the remaining constant term
|
73 |
+
return l
|
module/mel_processing.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.utils.data
|
8 |
+
import numpy as np
|
9 |
+
import librosa
|
10 |
+
import librosa.util as librosa_util
|
11 |
+
from librosa.util import normalize, pad_center, tiny
|
12 |
+
from scipy.signal import get_window
|
13 |
+
from scipy.io.wavfile import read
|
14 |
+
from librosa.filters import mel as librosa_mel_fn
|
15 |
+
|
16 |
+
MAX_WAV_VALUE = 32768.0
|
17 |
+
|
18 |
+
|
19 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
20 |
+
"""
|
21 |
+
PARAMS
|
22 |
+
------
|
23 |
+
C: compression factor
|
24 |
+
"""
|
25 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
26 |
+
|
27 |
+
|
28 |
+
def dynamic_range_decompression_torch(x, C=1):
|
29 |
+
"""
|
30 |
+
PARAMS
|
31 |
+
------
|
32 |
+
C: compression factor used to compress
|
33 |
+
"""
|
34 |
+
return torch.exp(x) / C
|
35 |
+
|
36 |
+
|
37 |
+
def spectral_normalize_torch(magnitudes):
|
38 |
+
output = dynamic_range_compression_torch(magnitudes)
|
39 |
+
return output
|
40 |
+
|
41 |
+
|
42 |
+
def spectral_de_normalize_torch(magnitudes):
|
43 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
44 |
+
return output
|
45 |
+
|
46 |
+
|
47 |
+
mel_basis = {}
|
48 |
+
hann_window = {}
|
49 |
+
|
50 |
+
|
51 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
52 |
+
if torch.min(y) < -1.0:
|
53 |
+
print("min value is ", torch.min(y))
|
54 |
+
if torch.max(y) > 1.0:
|
55 |
+
print("max value is ", torch.max(y))
|
56 |
+
|
57 |
+
global hann_window
|
58 |
+
dtype_device = str(y.dtype) + "_" + str(y.device)
|
59 |
+
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
60 |
+
if wnsize_dtype_device not in hann_window:
|
61 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
62 |
+
dtype=y.dtype, device=y.device
|
63 |
+
)
|
64 |
+
|
65 |
+
y = torch.nn.functional.pad(
|
66 |
+
y.unsqueeze(1),
|
67 |
+
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
68 |
+
mode="reflect",
|
69 |
+
)
|
70 |
+
y = y.squeeze(1)
|
71 |
+
spec = torch.stft(
|
72 |
+
y,
|
73 |
+
n_fft,
|
74 |
+
hop_length=hop_size,
|
75 |
+
win_length=win_size,
|
76 |
+
window=hann_window[wnsize_dtype_device],
|
77 |
+
center=center,
|
78 |
+
pad_mode="reflect",
|
79 |
+
normalized=False,
|
80 |
+
onesided=True,
|
81 |
+
return_complex=False,
|
82 |
+
)
|
83 |
+
|
84 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
85 |
+
return spec
|
86 |
+
|
87 |
+
|
88 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
89 |
+
global mel_basis
|
90 |
+
dtype_device = str(spec.dtype) + "_" + str(spec.device)
|
91 |
+
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
92 |
+
if fmax_dtype_device not in mel_basis:
|
93 |
+
mel = librosa_mel_fn(
|
94 |
+
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
|
95 |
+
)
|
96 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
97 |
+
dtype=spec.dtype, device=spec.device
|
98 |
+
)
|
99 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
100 |
+
spec = spectral_normalize_torch(spec)
|
101 |
+
return spec
|
102 |
+
|
103 |
+
|
104 |
+
def mel_spectrogram_torch(
|
105 |
+
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
|
106 |
+
):
|
107 |
+
if torch.min(y) < -1.0:
|
108 |
+
print("min value is ", torch.min(y))
|
109 |
+
if torch.max(y) > 1.0:
|
110 |
+
print("max value is ", torch.max(y))
|
111 |
+
|
112 |
+
global mel_basis, hann_window
|
113 |
+
dtype_device = str(y.dtype) + "_" + str(y.device)
|
114 |
+
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
115 |
+
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
116 |
+
if fmax_dtype_device not in mel_basis:
|
117 |
+
mel = librosa_mel_fn(
|
118 |
+
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
|
119 |
+
)
|
120 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
121 |
+
dtype=y.dtype, device=y.device
|
122 |
+
)
|
123 |
+
if wnsize_dtype_device not in hann_window:
|
124 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
125 |
+
dtype=y.dtype, device=y.device
|
126 |
+
)
|
127 |
+
|
128 |
+
y = torch.nn.functional.pad(
|
129 |
+
y.unsqueeze(1),
|
130 |
+
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
131 |
+
mode="reflect",
|
132 |
+
)
|
133 |
+
y = y.squeeze(1)
|
134 |
+
|
135 |
+
spec = torch.stft(
|
136 |
+
y,
|
137 |
+
n_fft,
|
138 |
+
hop_length=hop_size,
|
139 |
+
win_length=win_size,
|
140 |
+
window=hann_window[wnsize_dtype_device],
|
141 |
+
center=center,
|
142 |
+
pad_mode="reflect",
|
143 |
+
normalized=False,
|
144 |
+
onesided=True,
|
145 |
+
return_complex=False,
|
146 |
+
)
|
147 |
+
|
148 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
149 |
+
|
150 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
151 |
+
spec = spectral_normalize_torch(spec)
|
152 |
+
|
153 |
+
return spec
|
module/models.py
ADDED
@@ -0,0 +1,989 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
from module import commons
|
8 |
+
from module import modules
|
9 |
+
from module import attentions
|
10 |
+
|
11 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
12 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
13 |
+
from module.commons import init_weights, get_padding
|
14 |
+
from module.mrte_model import MRTE
|
15 |
+
from module.quantize import ResidualVectorQuantizer
|
16 |
+
from text import symbols
|
17 |
+
from torch.cuda.amp import autocast
|
18 |
+
|
19 |
+
|
20 |
+
class StochasticDurationPredictor(nn.Module):
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
in_channels,
|
24 |
+
filter_channels,
|
25 |
+
kernel_size,
|
26 |
+
p_dropout,
|
27 |
+
n_flows=4,
|
28 |
+
gin_channels=0,
|
29 |
+
):
|
30 |
+
super().__init__()
|
31 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
32 |
+
self.in_channels = in_channels
|
33 |
+
self.filter_channels = filter_channels
|
34 |
+
self.kernel_size = kernel_size
|
35 |
+
self.p_dropout = p_dropout
|
36 |
+
self.n_flows = n_flows
|
37 |
+
self.gin_channels = gin_channels
|
38 |
+
|
39 |
+
self.log_flow = modules.Log()
|
40 |
+
self.flows = nn.ModuleList()
|
41 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
42 |
+
for i in range(n_flows):
|
43 |
+
self.flows.append(
|
44 |
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
45 |
+
)
|
46 |
+
self.flows.append(modules.Flip())
|
47 |
+
|
48 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
49 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
50 |
+
self.post_convs = modules.DDSConv(
|
51 |
+
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
52 |
+
)
|
53 |
+
self.post_flows = nn.ModuleList()
|
54 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
55 |
+
for i in range(4):
|
56 |
+
self.post_flows.append(
|
57 |
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
58 |
+
)
|
59 |
+
self.post_flows.append(modules.Flip())
|
60 |
+
|
61 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
62 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
63 |
+
self.convs = modules.DDSConv(
|
64 |
+
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
65 |
+
)
|
66 |
+
if gin_channels != 0:
|
67 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
68 |
+
|
69 |
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
70 |
+
x = torch.detach(x)
|
71 |
+
x = self.pre(x)
|
72 |
+
if g is not None:
|
73 |
+
g = torch.detach(g)
|
74 |
+
x = x + self.cond(g)
|
75 |
+
x = self.convs(x, x_mask)
|
76 |
+
x = self.proj(x) * x_mask
|
77 |
+
|
78 |
+
if not reverse:
|
79 |
+
flows = self.flows
|
80 |
+
assert w is not None
|
81 |
+
|
82 |
+
logdet_tot_q = 0
|
83 |
+
h_w = self.post_pre(w)
|
84 |
+
h_w = self.post_convs(h_w, x_mask)
|
85 |
+
h_w = self.post_proj(h_w) * x_mask
|
86 |
+
e_q = (
|
87 |
+
torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
|
88 |
+
* x_mask
|
89 |
+
)
|
90 |
+
z_q = e_q
|
91 |
+
for flow in self.post_flows:
|
92 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
93 |
+
logdet_tot_q += logdet_q
|
94 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
95 |
+
u = torch.sigmoid(z_u) * x_mask
|
96 |
+
z0 = (w - u) * x_mask
|
97 |
+
logdet_tot_q += torch.sum(
|
98 |
+
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
|
99 |
+
)
|
100 |
+
logq = (
|
101 |
+
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
|
102 |
+
- logdet_tot_q
|
103 |
+
)
|
104 |
+
|
105 |
+
logdet_tot = 0
|
106 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
107 |
+
logdet_tot += logdet
|
108 |
+
z = torch.cat([z0, z1], 1)
|
109 |
+
for flow in flows:
|
110 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
111 |
+
logdet_tot = logdet_tot + logdet
|
112 |
+
nll = (
|
113 |
+
torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
|
114 |
+
- logdet_tot
|
115 |
+
)
|
116 |
+
return nll + logq # [b]
|
117 |
+
else:
|
118 |
+
flows = list(reversed(self.flows))
|
119 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
120 |
+
z = (
|
121 |
+
torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
|
122 |
+
* noise_scale
|
123 |
+
)
|
124 |
+
for flow in flows:
|
125 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
126 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
127 |
+
logw = z0
|
128 |
+
return logw
|
129 |
+
|
130 |
+
|
131 |
+
class DurationPredictor(nn.Module):
|
132 |
+
def __init__(
|
133 |
+
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
134 |
+
):
|
135 |
+
super().__init__()
|
136 |
+
|
137 |
+
self.in_channels = in_channels
|
138 |
+
self.filter_channels = filter_channels
|
139 |
+
self.kernel_size = kernel_size
|
140 |
+
self.p_dropout = p_dropout
|
141 |
+
self.gin_channels = gin_channels
|
142 |
+
|
143 |
+
self.drop = nn.Dropout(p_dropout)
|
144 |
+
self.conv_1 = nn.Conv1d(
|
145 |
+
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
146 |
+
)
|
147 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
148 |
+
self.conv_2 = nn.Conv1d(
|
149 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
150 |
+
)
|
151 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
152 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
153 |
+
|
154 |
+
if gin_channels != 0:
|
155 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
156 |
+
|
157 |
+
def forward(self, x, x_mask, g=None):
|
158 |
+
x = torch.detach(x)
|
159 |
+
if g is not None:
|
160 |
+
g = torch.detach(g)
|
161 |
+
x = x + self.cond(g)
|
162 |
+
x = self.conv_1(x * x_mask)
|
163 |
+
x = torch.relu(x)
|
164 |
+
x = self.norm_1(x)
|
165 |
+
x = self.drop(x)
|
166 |
+
x = self.conv_2(x * x_mask)
|
167 |
+
x = torch.relu(x)
|
168 |
+
x = self.norm_2(x)
|
169 |
+
x = self.drop(x)
|
170 |
+
x = self.proj(x * x_mask)
|
171 |
+
return x * x_mask
|
172 |
+
|
173 |
+
|
174 |
+
class TextEncoder(nn.Module):
|
175 |
+
def __init__(
|
176 |
+
self,
|
177 |
+
out_channels,
|
178 |
+
hidden_channels,
|
179 |
+
filter_channels,
|
180 |
+
n_heads,
|
181 |
+
n_layers,
|
182 |
+
kernel_size,
|
183 |
+
p_dropout,
|
184 |
+
latent_channels=192,
|
185 |
+
):
|
186 |
+
super().__init__()
|
187 |
+
self.out_channels = out_channels
|
188 |
+
self.hidden_channels = hidden_channels
|
189 |
+
self.filter_channels = filter_channels
|
190 |
+
self.n_heads = n_heads
|
191 |
+
self.n_layers = n_layers
|
192 |
+
self.kernel_size = kernel_size
|
193 |
+
self.p_dropout = p_dropout
|
194 |
+
self.latent_channels = latent_channels
|
195 |
+
|
196 |
+
self.ssl_proj = nn.Conv1d(768, hidden_channels, 1)
|
197 |
+
|
198 |
+
self.encoder_ssl = attentions.Encoder(
|
199 |
+
hidden_channels,
|
200 |
+
filter_channels,
|
201 |
+
n_heads,
|
202 |
+
n_layers // 2,
|
203 |
+
kernel_size,
|
204 |
+
p_dropout,
|
205 |
+
)
|
206 |
+
|
207 |
+
self.encoder_text = attentions.Encoder(
|
208 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
209 |
+
)
|
210 |
+
self.text_embedding = nn.Embedding(len(symbols), hidden_channels)
|
211 |
+
|
212 |
+
self.mrte = MRTE()
|
213 |
+
|
214 |
+
self.encoder2 = attentions.Encoder(
|
215 |
+
hidden_channels,
|
216 |
+
filter_channels,
|
217 |
+
n_heads,
|
218 |
+
n_layers // 2,
|
219 |
+
kernel_size,
|
220 |
+
p_dropout,
|
221 |
+
)
|
222 |
+
|
223 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
224 |
+
|
225 |
+
def forward(self, y, y_lengths, text, text_lengths, ge, test=None):
|
226 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(
|
227 |
+
y.dtype
|
228 |
+
)
|
229 |
+
|
230 |
+
y = self.ssl_proj(y * y_mask) * y_mask
|
231 |
+
y = self.encoder_ssl(y * y_mask, y_mask)
|
232 |
+
|
233 |
+
text_mask = torch.unsqueeze(
|
234 |
+
commons.sequence_mask(text_lengths, text.size(1)), 1
|
235 |
+
).to(y.dtype)
|
236 |
+
if test == 1:
|
237 |
+
text[:, :] = 0
|
238 |
+
text = self.text_embedding(text).transpose(1, 2)
|
239 |
+
text = self.encoder_text(text * text_mask, text_mask)
|
240 |
+
y = self.mrte(y, y_mask, text, text_mask, ge)
|
241 |
+
|
242 |
+
y = self.encoder2(y * y_mask, y_mask)
|
243 |
+
|
244 |
+
stats = self.proj(y) * y_mask
|
245 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
246 |
+
return y, m, logs, y_mask
|
247 |
+
|
248 |
+
def extract_latent(self, x):
|
249 |
+
x = self.ssl_proj(x)
|
250 |
+
quantized, codes, commit_loss, quantized_list = self.quantizer(x)
|
251 |
+
return codes.transpose(0, 1)
|
252 |
+
|
253 |
+
def decode_latent(self, codes, y_mask, refer, refer_mask, ge):
|
254 |
+
quantized = self.quantizer.decode(codes)
|
255 |
+
|
256 |
+
y = self.vq_proj(quantized) * y_mask
|
257 |
+
y = self.encoder_ssl(y * y_mask, y_mask)
|
258 |
+
|
259 |
+
y = self.mrte(y, y_mask, refer, refer_mask, ge)
|
260 |
+
|
261 |
+
y = self.encoder2(y * y_mask, y_mask)
|
262 |
+
|
263 |
+
stats = self.proj(y) * y_mask
|
264 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
265 |
+
return y, m, logs, y_mask, quantized
|
266 |
+
|
267 |
+
|
268 |
+
class ResidualCouplingBlock(nn.Module):
|
269 |
+
def __init__(
|
270 |
+
self,
|
271 |
+
channels,
|
272 |
+
hidden_channels,
|
273 |
+
kernel_size,
|
274 |
+
dilation_rate,
|
275 |
+
n_layers,
|
276 |
+
n_flows=4,
|
277 |
+
gin_channels=0,
|
278 |
+
):
|
279 |
+
super().__init__()
|
280 |
+
self.channels = channels
|
281 |
+
self.hidden_channels = hidden_channels
|
282 |
+
self.kernel_size = kernel_size
|
283 |
+
self.dilation_rate = dilation_rate
|
284 |
+
self.n_layers = n_layers
|
285 |
+
self.n_flows = n_flows
|
286 |
+
self.gin_channels = gin_channels
|
287 |
+
|
288 |
+
self.flows = nn.ModuleList()
|
289 |
+
for i in range(n_flows):
|
290 |
+
self.flows.append(
|
291 |
+
modules.ResidualCouplingLayer(
|
292 |
+
channels,
|
293 |
+
hidden_channels,
|
294 |
+
kernel_size,
|
295 |
+
dilation_rate,
|
296 |
+
n_layers,
|
297 |
+
gin_channels=gin_channels,
|
298 |
+
mean_only=True,
|
299 |
+
)
|
300 |
+
)
|
301 |
+
self.flows.append(modules.Flip())
|
302 |
+
|
303 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
304 |
+
if not reverse:
|
305 |
+
for flow in self.flows:
|
306 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
307 |
+
else:
|
308 |
+
for flow in reversed(self.flows):
|
309 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
310 |
+
return x
|
311 |
+
|
312 |
+
|
313 |
+
class PosteriorEncoder(nn.Module):
|
314 |
+
def __init__(
|
315 |
+
self,
|
316 |
+
in_channels,
|
317 |
+
out_channels,
|
318 |
+
hidden_channels,
|
319 |
+
kernel_size,
|
320 |
+
dilation_rate,
|
321 |
+
n_layers,
|
322 |
+
gin_channels=0,
|
323 |
+
):
|
324 |
+
super().__init__()
|
325 |
+
self.in_channels = in_channels
|
326 |
+
self.out_channels = out_channels
|
327 |
+
self.hidden_channels = hidden_channels
|
328 |
+
self.kernel_size = kernel_size
|
329 |
+
self.dilation_rate = dilation_rate
|
330 |
+
self.n_layers = n_layers
|
331 |
+
self.gin_channels = gin_channels
|
332 |
+
|
333 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
334 |
+
self.enc = modules.WN(
|
335 |
+
hidden_channels,
|
336 |
+
kernel_size,
|
337 |
+
dilation_rate,
|
338 |
+
n_layers,
|
339 |
+
gin_channels=gin_channels,
|
340 |
+
)
|
341 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
342 |
+
|
343 |
+
def forward(self, x, x_lengths, g=None):
|
344 |
+
if g != None:
|
345 |
+
g = g.detach()
|
346 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
347 |
+
x.dtype
|
348 |
+
)
|
349 |
+
x = self.pre(x) * x_mask
|
350 |
+
x = self.enc(x, x_mask, g=g)
|
351 |
+
stats = self.proj(x) * x_mask
|
352 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
353 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
354 |
+
return z, m, logs, x_mask
|
355 |
+
|
356 |
+
|
357 |
+
class WNEncoder(nn.Module):
|
358 |
+
def __init__(
|
359 |
+
self,
|
360 |
+
in_channels,
|
361 |
+
out_channels,
|
362 |
+
hidden_channels,
|
363 |
+
kernel_size,
|
364 |
+
dilation_rate,
|
365 |
+
n_layers,
|
366 |
+
gin_channels=0,
|
367 |
+
):
|
368 |
+
super().__init__()
|
369 |
+
self.in_channels = in_channels
|
370 |
+
self.out_channels = out_channels
|
371 |
+
self.hidden_channels = hidden_channels
|
372 |
+
self.kernel_size = kernel_size
|
373 |
+
self.dilation_rate = dilation_rate
|
374 |
+
self.n_layers = n_layers
|
375 |
+
self.gin_channels = gin_channels
|
376 |
+
|
377 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
378 |
+
self.enc = modules.WN(
|
379 |
+
hidden_channels,
|
380 |
+
kernel_size,
|
381 |
+
dilation_rate,
|
382 |
+
n_layers,
|
383 |
+
gin_channels=gin_channels,
|
384 |
+
)
|
385 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
386 |
+
self.norm = modules.LayerNorm(out_channels)
|
387 |
+
|
388 |
+
def forward(self, x, x_lengths, g=None):
|
389 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
390 |
+
x.dtype
|
391 |
+
)
|
392 |
+
x = self.pre(x) * x_mask
|
393 |
+
x = self.enc(x, x_mask, g=g)
|
394 |
+
out = self.proj(x) * x_mask
|
395 |
+
out = self.norm(out)
|
396 |
+
return out
|
397 |
+
|
398 |
+
|
399 |
+
class Generator(torch.nn.Module):
|
400 |
+
def __init__(
|
401 |
+
self,
|
402 |
+
initial_channel,
|
403 |
+
resblock,
|
404 |
+
resblock_kernel_sizes,
|
405 |
+
resblock_dilation_sizes,
|
406 |
+
upsample_rates,
|
407 |
+
upsample_initial_channel,
|
408 |
+
upsample_kernel_sizes,
|
409 |
+
gin_channels=0,
|
410 |
+
):
|
411 |
+
super(Generator, self).__init__()
|
412 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
413 |
+
self.num_upsamples = len(upsample_rates)
|
414 |
+
self.conv_pre = Conv1d(
|
415 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
416 |
+
)
|
417 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
418 |
+
|
419 |
+
self.ups = nn.ModuleList()
|
420 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
421 |
+
self.ups.append(
|
422 |
+
weight_norm(
|
423 |
+
ConvTranspose1d(
|
424 |
+
upsample_initial_channel // (2**i),
|
425 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
426 |
+
k,
|
427 |
+
u,
|
428 |
+
padding=(k - u) // 2,
|
429 |
+
)
|
430 |
+
)
|
431 |
+
)
|
432 |
+
|
433 |
+
self.resblocks = nn.ModuleList()
|
434 |
+
for i in range(len(self.ups)):
|
435 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
436 |
+
for j, (k, d) in enumerate(
|
437 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
438 |
+
):
|
439 |
+
self.resblocks.append(resblock(ch, k, d))
|
440 |
+
|
441 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
442 |
+
self.ups.apply(init_weights)
|
443 |
+
|
444 |
+
if gin_channels != 0:
|
445 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
446 |
+
|
447 |
+
def forward(self, x, g=None):
|
448 |
+
x = self.conv_pre(x)
|
449 |
+
if g is not None:
|
450 |
+
x = x + self.cond(g)
|
451 |
+
|
452 |
+
for i in range(self.num_upsamples):
|
453 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
454 |
+
x = self.ups[i](x)
|
455 |
+
xs = None
|
456 |
+
for j in range(self.num_kernels):
|
457 |
+
if xs is None:
|
458 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
459 |
+
else:
|
460 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
461 |
+
x = xs / self.num_kernels
|
462 |
+
x = F.leaky_relu(x)
|
463 |
+
x = self.conv_post(x)
|
464 |
+
x = torch.tanh(x)
|
465 |
+
|
466 |
+
return x
|
467 |
+
|
468 |
+
def remove_weight_norm(self):
|
469 |
+
print("Removing weight norm...")
|
470 |
+
for l in self.ups:
|
471 |
+
remove_weight_norm(l)
|
472 |
+
for l in self.resblocks:
|
473 |
+
l.remove_weight_norm()
|
474 |
+
|
475 |
+
|
476 |
+
class DiscriminatorP(torch.nn.Module):
|
477 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
478 |
+
super(DiscriminatorP, self).__init__()
|
479 |
+
self.period = period
|
480 |
+
self.use_spectral_norm = use_spectral_norm
|
481 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
482 |
+
self.convs = nn.ModuleList(
|
483 |
+
[
|
484 |
+
norm_f(
|
485 |
+
Conv2d(
|
486 |
+
1,
|
487 |
+
32,
|
488 |
+
(kernel_size, 1),
|
489 |
+
(stride, 1),
|
490 |
+
padding=(get_padding(kernel_size, 1), 0),
|
491 |
+
)
|
492 |
+
),
|
493 |
+
norm_f(
|
494 |
+
Conv2d(
|
495 |
+
32,
|
496 |
+
128,
|
497 |
+
(kernel_size, 1),
|
498 |
+
(stride, 1),
|
499 |
+
padding=(get_padding(kernel_size, 1), 0),
|
500 |
+
)
|
501 |
+
),
|
502 |
+
norm_f(
|
503 |
+
Conv2d(
|
504 |
+
128,
|
505 |
+
512,
|
506 |
+
(kernel_size, 1),
|
507 |
+
(stride, 1),
|
508 |
+
padding=(get_padding(kernel_size, 1), 0),
|
509 |
+
)
|
510 |
+
),
|
511 |
+
norm_f(
|
512 |
+
Conv2d(
|
513 |
+
512,
|
514 |
+
1024,
|
515 |
+
(kernel_size, 1),
|
516 |
+
(stride, 1),
|
517 |
+
padding=(get_padding(kernel_size, 1), 0),
|
518 |
+
)
|
519 |
+
),
|
520 |
+
norm_f(
|
521 |
+
Conv2d(
|
522 |
+
1024,
|
523 |
+
1024,
|
524 |
+
(kernel_size, 1),
|
525 |
+
1,
|
526 |
+
padding=(get_padding(kernel_size, 1), 0),
|
527 |
+
)
|
528 |
+
),
|
529 |
+
]
|
530 |
+
)
|
531 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
532 |
+
|
533 |
+
def forward(self, x):
|
534 |
+
fmap = []
|
535 |
+
|
536 |
+
# 1d to 2d
|
537 |
+
b, c, t = x.shape
|
538 |
+
if t % self.period != 0: # pad first
|
539 |
+
n_pad = self.period - (t % self.period)
|
540 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
541 |
+
t = t + n_pad
|
542 |
+
x = x.view(b, c, t // self.period, self.period)
|
543 |
+
|
544 |
+
for l in self.convs:
|
545 |
+
x = l(x)
|
546 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
547 |
+
fmap.append(x)
|
548 |
+
x = self.conv_post(x)
|
549 |
+
fmap.append(x)
|
550 |
+
x = torch.flatten(x, 1, -1)
|
551 |
+
|
552 |
+
return x, fmap
|
553 |
+
|
554 |
+
|
555 |
+
class DiscriminatorS(torch.nn.Module):
|
556 |
+
def __init__(self, use_spectral_norm=False):
|
557 |
+
super(DiscriminatorS, self).__init__()
|
558 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
559 |
+
self.convs = nn.ModuleList(
|
560 |
+
[
|
561 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
562 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
563 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
564 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
565 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
566 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
567 |
+
]
|
568 |
+
)
|
569 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
570 |
+
|
571 |
+
def forward(self, x):
|
572 |
+
fmap = []
|
573 |
+
|
574 |
+
for l in self.convs:
|
575 |
+
x = l(x)
|
576 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
577 |
+
fmap.append(x)
|
578 |
+
x = self.conv_post(x)
|
579 |
+
fmap.append(x)
|
580 |
+
x = torch.flatten(x, 1, -1)
|
581 |
+
|
582 |
+
return x, fmap
|
583 |
+
|
584 |
+
|
585 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
586 |
+
def __init__(self, use_spectral_norm=False):
|
587 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
588 |
+
periods = [2, 3, 5, 7, 11]
|
589 |
+
|
590 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
591 |
+
discs = discs + [
|
592 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
593 |
+
]
|
594 |
+
self.discriminators = nn.ModuleList(discs)
|
595 |
+
|
596 |
+
def forward(self, y, y_hat):
|
597 |
+
y_d_rs = []
|
598 |
+
y_d_gs = []
|
599 |
+
fmap_rs = []
|
600 |
+
fmap_gs = []
|
601 |
+
for i, d in enumerate(self.discriminators):
|
602 |
+
y_d_r, fmap_r = d(y)
|
603 |
+
y_d_g, fmap_g = d(y_hat)
|
604 |
+
y_d_rs.append(y_d_r)
|
605 |
+
y_d_gs.append(y_d_g)
|
606 |
+
fmap_rs.append(fmap_r)
|
607 |
+
fmap_gs.append(fmap_g)
|
608 |
+
|
609 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
610 |
+
|
611 |
+
|
612 |
+
class ReferenceEncoder(nn.Module):
|
613 |
+
"""
|
614 |
+
inputs --- [N, Ty/r, n_mels*r] mels
|
615 |
+
outputs --- [N, ref_enc_gru_size]
|
616 |
+
"""
|
617 |
+
|
618 |
+
def __init__(self, spec_channels, gin_channels=0):
|
619 |
+
super().__init__()
|
620 |
+
self.spec_channels = spec_channels
|
621 |
+
ref_enc_filters = [32, 32, 64, 64, 128, 128]
|
622 |
+
K = len(ref_enc_filters)
|
623 |
+
filters = [1] + ref_enc_filters
|
624 |
+
convs = [
|
625 |
+
weight_norm(
|
626 |
+
nn.Conv2d(
|
627 |
+
in_channels=filters[i],
|
628 |
+
out_channels=filters[i + 1],
|
629 |
+
kernel_size=(3, 3),
|
630 |
+
stride=(2, 2),
|
631 |
+
padding=(1, 1),
|
632 |
+
)
|
633 |
+
)
|
634 |
+
for i in range(K)
|
635 |
+
]
|
636 |
+
self.convs = nn.ModuleList(convs)
|
637 |
+
# self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)])
|
638 |
+
|
639 |
+
out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
|
640 |
+
self.gru = nn.GRU(
|
641 |
+
input_size=ref_enc_filters[-1] * out_channels,
|
642 |
+
hidden_size=256 // 2,
|
643 |
+
batch_first=True,
|
644 |
+
)
|
645 |
+
self.proj = nn.Linear(128, gin_channels)
|
646 |
+
|
647 |
+
def forward(self, inputs):
|
648 |
+
N = inputs.size(0)
|
649 |
+
out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs]
|
650 |
+
for conv in self.convs:
|
651 |
+
out = conv(out)
|
652 |
+
# out = wn(out)
|
653 |
+
out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K]
|
654 |
+
|
655 |
+
out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
|
656 |
+
T = out.size(1)
|
657 |
+
N = out.size(0)
|
658 |
+
out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
|
659 |
+
|
660 |
+
self.gru.flatten_parameters()
|
661 |
+
memory, out = self.gru(out) # out --- [1, N, 128]
|
662 |
+
|
663 |
+
return self.proj(out.squeeze(0)).unsqueeze(-1)
|
664 |
+
|
665 |
+
def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
|
666 |
+
for i in range(n_convs):
|
667 |
+
L = (L - kernel_size + 2 * pad) // stride + 1
|
668 |
+
return L
|
669 |
+
|
670 |
+
|
671 |
+
class Quantizer_module(torch.nn.Module):
|
672 |
+
def __init__(self, n_e, e_dim):
|
673 |
+
super(Quantizer_module, self).__init__()
|
674 |
+
self.embedding = nn.Embedding(n_e, e_dim)
|
675 |
+
self.embedding.weight.data.uniform_(-1.0 / n_e, 1.0 / n_e)
|
676 |
+
|
677 |
+
def forward(self, x):
|
678 |
+
d = (
|
679 |
+
torch.sum(x**2, 1, keepdim=True)
|
680 |
+
+ torch.sum(self.embedding.weight**2, 1)
|
681 |
+
- 2 * torch.matmul(x, self.embedding.weight.T)
|
682 |
+
)
|
683 |
+
min_indicies = torch.argmin(d, 1)
|
684 |
+
z_q = self.embedding(min_indicies)
|
685 |
+
return z_q, min_indicies
|
686 |
+
|
687 |
+
|
688 |
+
class Quantizer(torch.nn.Module):
|
689 |
+
def __init__(self, embed_dim=512, n_code_groups=4, n_codes=160):
|
690 |
+
super(Quantizer, self).__init__()
|
691 |
+
assert embed_dim % n_code_groups == 0
|
692 |
+
self.quantizer_modules = nn.ModuleList(
|
693 |
+
[
|
694 |
+
Quantizer_module(n_codes, embed_dim // n_code_groups)
|
695 |
+
for _ in range(n_code_groups)
|
696 |
+
]
|
697 |
+
)
|
698 |
+
self.n_code_groups = n_code_groups
|
699 |
+
self.embed_dim = embed_dim
|
700 |
+
|
701 |
+
def forward(self, xin):
|
702 |
+
# B, C, T
|
703 |
+
B, C, T = xin.shape
|
704 |
+
xin = xin.transpose(1, 2)
|
705 |
+
x = xin.reshape(-1, self.embed_dim)
|
706 |
+
x = torch.split(x, self.embed_dim // self.n_code_groups, dim=-1)
|
707 |
+
min_indicies = []
|
708 |
+
z_q = []
|
709 |
+
for _x, m in zip(x, self.quantizer_modules):
|
710 |
+
_z_q, _min_indicies = m(_x)
|
711 |
+
z_q.append(_z_q)
|
712 |
+
min_indicies.append(_min_indicies) # B * T,
|
713 |
+
z_q = torch.cat(z_q, -1).reshape(xin.shape)
|
714 |
+
loss = 0.25 * torch.mean((z_q.detach() - xin) ** 2) + torch.mean(
|
715 |
+
(z_q - xin.detach()) ** 2
|
716 |
+
)
|
717 |
+
z_q = xin + (z_q - xin).detach()
|
718 |
+
z_q = z_q.transpose(1, 2)
|
719 |
+
codes = torch.stack(min_indicies, -1).reshape(B, T, self.n_code_groups)
|
720 |
+
return z_q, loss, codes.transpose(1, 2)
|
721 |
+
|
722 |
+
def embed(self, x):
|
723 |
+
# idx: N, 4, T
|
724 |
+
x = x.transpose(1, 2)
|
725 |
+
x = torch.split(x, 1, 2)
|
726 |
+
ret = []
|
727 |
+
for q, embed in zip(x, self.quantizer_modules):
|
728 |
+
q = embed.embedding(q.squeeze(-1))
|
729 |
+
ret.append(q)
|
730 |
+
ret = torch.cat(ret, -1)
|
731 |
+
return ret.transpose(1, 2) # N, C, T
|
732 |
+
|
733 |
+
|
734 |
+
class CodePredictor(nn.Module):
|
735 |
+
def __init__(
|
736 |
+
self,
|
737 |
+
hidden_channels,
|
738 |
+
filter_channels,
|
739 |
+
n_heads,
|
740 |
+
n_layers,
|
741 |
+
kernel_size,
|
742 |
+
p_dropout,
|
743 |
+
n_q=8,
|
744 |
+
dims=1024,
|
745 |
+
ssl_dim=768,
|
746 |
+
):
|
747 |
+
super().__init__()
|
748 |
+
self.hidden_channels = hidden_channels
|
749 |
+
self.filter_channels = filter_channels
|
750 |
+
self.n_heads = n_heads
|
751 |
+
self.n_layers = n_layers
|
752 |
+
self.kernel_size = kernel_size
|
753 |
+
self.p_dropout = p_dropout
|
754 |
+
|
755 |
+
self.vq_proj = nn.Conv1d(ssl_dim, hidden_channels, 1)
|
756 |
+
self.ref_enc = modules.MelStyleEncoder(
|
757 |
+
ssl_dim, style_vector_dim=hidden_channels
|
758 |
+
)
|
759 |
+
|
760 |
+
self.encoder = attentions.Encoder(
|
761 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
762 |
+
)
|
763 |
+
|
764 |
+
self.out_proj = nn.Conv1d(hidden_channels, (n_q - 1) * dims, 1)
|
765 |
+
self.n_q = n_q
|
766 |
+
self.dims = dims
|
767 |
+
|
768 |
+
def forward(self, x, x_mask, refer, codes, infer=False):
|
769 |
+
x = x.detach()
|
770 |
+
x = self.vq_proj(x * x_mask) * x_mask
|
771 |
+
g = self.ref_enc(refer, x_mask)
|
772 |
+
x = x + g
|
773 |
+
x = self.encoder(x * x_mask, x_mask)
|
774 |
+
x = self.out_proj(x * x_mask) * x_mask
|
775 |
+
logits = x.reshape(x.shape[0], self.n_q - 1, self.dims, x.shape[-1]).transpose(
|
776 |
+
2, 3
|
777 |
+
)
|
778 |
+
target = codes[1:].transpose(0, 1)
|
779 |
+
if not infer:
|
780 |
+
logits = logits.reshape(-1, self.dims)
|
781 |
+
target = target.reshape(-1)
|
782 |
+
loss = torch.nn.functional.cross_entropy(logits, target)
|
783 |
+
return loss
|
784 |
+
else:
|
785 |
+
_, top10_preds = torch.topk(logits, 10, dim=-1)
|
786 |
+
correct_top10 = torch.any(top10_preds == target.unsqueeze(-1), dim=-1)
|
787 |
+
top3_acc = 100 * torch.mean(correct_top10.float()).detach().cpu().item()
|
788 |
+
|
789 |
+
print("Top-10 Accuracy:", top3_acc, "%")
|
790 |
+
|
791 |
+
pred_codes = torch.argmax(logits, dim=-1)
|
792 |
+
acc = 100 * torch.mean((pred_codes == target).float()).detach().cpu().item()
|
793 |
+
print("Top-1 Accuracy:", acc, "%")
|
794 |
+
|
795 |
+
return pred_codes.transpose(0, 1)
|
796 |
+
|
797 |
+
|
798 |
+
class SynthesizerTrn(nn.Module):
|
799 |
+
"""
|
800 |
+
Synthesizer for Training
|
801 |
+
"""
|
802 |
+
|
803 |
+
def __init__(
|
804 |
+
self,
|
805 |
+
spec_channels,
|
806 |
+
segment_size,
|
807 |
+
inter_channels,
|
808 |
+
hidden_channels,
|
809 |
+
filter_channels,
|
810 |
+
n_heads,
|
811 |
+
n_layers,
|
812 |
+
kernel_size,
|
813 |
+
p_dropout,
|
814 |
+
resblock,
|
815 |
+
resblock_kernel_sizes,
|
816 |
+
resblock_dilation_sizes,
|
817 |
+
upsample_rates,
|
818 |
+
upsample_initial_channel,
|
819 |
+
upsample_kernel_sizes,
|
820 |
+
n_speakers=0,
|
821 |
+
gin_channels=0,
|
822 |
+
use_sdp=True,
|
823 |
+
semantic_frame_rate=None,
|
824 |
+
freeze_quantizer=None,
|
825 |
+
**kwargs
|
826 |
+
):
|
827 |
+
super().__init__()
|
828 |
+
self.spec_channels = spec_channels
|
829 |
+
self.inter_channels = inter_channels
|
830 |
+
self.hidden_channels = hidden_channels
|
831 |
+
self.filter_channels = filter_channels
|
832 |
+
self.n_heads = n_heads
|
833 |
+
self.n_layers = n_layers
|
834 |
+
self.kernel_size = kernel_size
|
835 |
+
self.p_dropout = p_dropout
|
836 |
+
self.resblock = resblock
|
837 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
838 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
839 |
+
self.upsample_rates = upsample_rates
|
840 |
+
self.upsample_initial_channel = upsample_initial_channel
|
841 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
842 |
+
self.segment_size = segment_size
|
843 |
+
self.n_speakers = n_speakers
|
844 |
+
self.gin_channels = gin_channels
|
845 |
+
|
846 |
+
self.use_sdp = use_sdp
|
847 |
+
self.enc_p = TextEncoder(
|
848 |
+
inter_channels,
|
849 |
+
hidden_channels,
|
850 |
+
filter_channels,
|
851 |
+
n_heads,
|
852 |
+
n_layers,
|
853 |
+
kernel_size,
|
854 |
+
p_dropout,
|
855 |
+
)
|
856 |
+
self.dec = Generator(
|
857 |
+
inter_channels,
|
858 |
+
resblock,
|
859 |
+
resblock_kernel_sizes,
|
860 |
+
resblock_dilation_sizes,
|
861 |
+
upsample_rates,
|
862 |
+
upsample_initial_channel,
|
863 |
+
upsample_kernel_sizes,
|
864 |
+
gin_channels=gin_channels,
|
865 |
+
)
|
866 |
+
self.enc_q = PosteriorEncoder(
|
867 |
+
spec_channels,
|
868 |
+
inter_channels,
|
869 |
+
hidden_channels,
|
870 |
+
5,
|
871 |
+
1,
|
872 |
+
16,
|
873 |
+
gin_channels=gin_channels,
|
874 |
+
)
|
875 |
+
self.flow = ResidualCouplingBlock(
|
876 |
+
inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels
|
877 |
+
)
|
878 |
+
|
879 |
+
self.ref_enc = modules.MelStyleEncoder(
|
880 |
+
spec_channels, style_vector_dim=gin_channels
|
881 |
+
)
|
882 |
+
|
883 |
+
ssl_dim = 768
|
884 |
+
assert semantic_frame_rate in ["25hz", "50hz"]
|
885 |
+
self.semantic_frame_rate = semantic_frame_rate
|
886 |
+
if semantic_frame_rate == "25hz":
|
887 |
+
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 2, stride=2)
|
888 |
+
else:
|
889 |
+
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 1, stride=1)
|
890 |
+
|
891 |
+
self.quantizer = ResidualVectorQuantizer(dimension=ssl_dim, n_q=1, bins=1024)
|
892 |
+
if freeze_quantizer:
|
893 |
+
self.ssl_proj.requires_grad_(False)
|
894 |
+
self.quantizer.requires_grad_(False)
|
895 |
+
# self.enc_p.text_embedding.requires_grad_(False)
|
896 |
+
# self.enc_p.encoder_text.requires_grad_(False)
|
897 |
+
# self.enc_p.mrte.requires_grad_(False)
|
898 |
+
|
899 |
+
def forward(self, ssl, y, y_lengths, text, text_lengths):
|
900 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(
|
901 |
+
y.dtype
|
902 |
+
)
|
903 |
+
ge = self.ref_enc(y * y_mask, y_mask)
|
904 |
+
|
905 |
+
with autocast(enabled=False):
|
906 |
+
ssl = self.ssl_proj(ssl)
|
907 |
+
quantized, codes, commit_loss, quantized_list = self.quantizer(
|
908 |
+
ssl, layers=[0]
|
909 |
+
)
|
910 |
+
|
911 |
+
if self.semantic_frame_rate == "25hz":
|
912 |
+
quantized = F.interpolate(
|
913 |
+
quantized, size=int(quantized.shape[-1] * 2), mode="nearest"
|
914 |
+
)
|
915 |
+
|
916 |
+
x, m_p, logs_p, y_mask = self.enc_p(
|
917 |
+
quantized, y_lengths, text, text_lengths, ge
|
918 |
+
)
|
919 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=ge)
|
920 |
+
z_p = self.flow(z, y_mask, g=ge)
|
921 |
+
|
922 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
923 |
+
z, y_lengths, self.segment_size
|
924 |
+
)
|
925 |
+
o = self.dec(z_slice, g=ge)
|
926 |
+
return (
|
927 |
+
o,
|
928 |
+
commit_loss,
|
929 |
+
ids_slice,
|
930 |
+
y_mask,
|
931 |
+
y_mask,
|
932 |
+
(z, z_p, m_p, logs_p, m_q, logs_q),
|
933 |
+
quantized,
|
934 |
+
)
|
935 |
+
|
936 |
+
def infer(self, ssl, y, y_lengths, text, text_lengths, test=None, noise_scale=0.5):
|
937 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(
|
938 |
+
y.dtype
|
939 |
+
)
|
940 |
+
ge = self.ref_enc(y * y_mask, y_mask)
|
941 |
+
|
942 |
+
ssl = self.ssl_proj(ssl)
|
943 |
+
quantized, codes, commit_loss, _ = self.quantizer(ssl, layers=[0])
|
944 |
+
if self.semantic_frame_rate == "25hz":
|
945 |
+
quantized = F.interpolate(
|
946 |
+
quantized, size=int(quantized.shape[-1] * 2), mode="nearest"
|
947 |
+
)
|
948 |
+
|
949 |
+
x, m_p, logs_p, y_mask = self.enc_p(
|
950 |
+
quantized, y_lengths, text, text_lengths, ge, test=test
|
951 |
+
)
|
952 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
953 |
+
|
954 |
+
z = self.flow(z_p, y_mask, g=ge, reverse=True)
|
955 |
+
|
956 |
+
o = self.dec((z * y_mask)[:, :, :], g=ge)
|
957 |
+
return o, y_mask, (z, z_p, m_p, logs_p)
|
958 |
+
|
959 |
+
@torch.no_grad()
|
960 |
+
def decode(self, codes, text, refer, noise_scale=0.5):
|
961 |
+
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
|
962 |
+
refer_mask = torch.unsqueeze(
|
963 |
+
commons.sequence_mask(refer_lengths, refer.size(2)), 1
|
964 |
+
).to(refer.dtype)
|
965 |
+
ge = self.ref_enc(refer * refer_mask, refer_mask)
|
966 |
+
|
967 |
+
y_lengths = torch.LongTensor([codes.size(2) * 2]).to(codes.device)
|
968 |
+
text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
|
969 |
+
|
970 |
+
quantized = self.quantizer.decode(codes)
|
971 |
+
if self.semantic_frame_rate == "25hz":
|
972 |
+
quantized = F.interpolate(
|
973 |
+
quantized, size=int(quantized.shape[-1] * 2), mode="nearest"
|
974 |
+
)
|
975 |
+
|
976 |
+
x, m_p, logs_p, y_mask = self.enc_p(
|
977 |
+
quantized, y_lengths, text, text_lengths, ge
|
978 |
+
)
|
979 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
980 |
+
|
981 |
+
z = self.flow(z_p, y_mask, g=ge, reverse=True)
|
982 |
+
|
983 |
+
o = self.dec((z * y_mask)[:, :, :], g=ge)
|
984 |
+
return o
|
985 |
+
|
986 |
+
def extract_latent(self, x):
|
987 |
+
ssl = self.ssl_proj(x)
|
988 |
+
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
|
989 |
+
return codes.transpose(0, 1)
|
module/modules.py
ADDED
@@ -0,0 +1,923 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
from torch.nn import Conv1d
|
8 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
9 |
+
|
10 |
+
from module import commons
|
11 |
+
from module.commons import init_weights, get_padding
|
12 |
+
from module.transforms import piecewise_rational_quadratic_transform
|
13 |
+
import torch.distributions as D
|
14 |
+
|
15 |
+
|
16 |
+
LRELU_SLOPE = 0.1
|
17 |
+
|
18 |
+
|
19 |
+
class LayerNorm(nn.Module):
|
20 |
+
def __init__(self, channels, eps=1e-5):
|
21 |
+
super().__init__()
|
22 |
+
self.channels = channels
|
23 |
+
self.eps = eps
|
24 |
+
|
25 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
26 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
x = x.transpose(1, -1)
|
30 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
31 |
+
return x.transpose(1, -1)
|
32 |
+
|
33 |
+
|
34 |
+
class ConvReluNorm(nn.Module):
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
in_channels,
|
38 |
+
hidden_channels,
|
39 |
+
out_channels,
|
40 |
+
kernel_size,
|
41 |
+
n_layers,
|
42 |
+
p_dropout,
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
self.in_channels = in_channels
|
46 |
+
self.hidden_channels = hidden_channels
|
47 |
+
self.out_channels = out_channels
|
48 |
+
self.kernel_size = kernel_size
|
49 |
+
self.n_layers = n_layers
|
50 |
+
self.p_dropout = p_dropout
|
51 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
52 |
+
|
53 |
+
self.conv_layers = nn.ModuleList()
|
54 |
+
self.norm_layers = nn.ModuleList()
|
55 |
+
self.conv_layers.append(
|
56 |
+
nn.Conv1d(
|
57 |
+
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
|
58 |
+
)
|
59 |
+
)
|
60 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
61 |
+
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
62 |
+
for _ in range(n_layers - 1):
|
63 |
+
self.conv_layers.append(
|
64 |
+
nn.Conv1d(
|
65 |
+
hidden_channels,
|
66 |
+
hidden_channels,
|
67 |
+
kernel_size,
|
68 |
+
padding=kernel_size // 2,
|
69 |
+
)
|
70 |
+
)
|
71 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
72 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
73 |
+
self.proj.weight.data.zero_()
|
74 |
+
self.proj.bias.data.zero_()
|
75 |
+
|
76 |
+
def forward(self, x, x_mask):
|
77 |
+
x_org = x
|
78 |
+
for i in range(self.n_layers):
|
79 |
+
x = self.conv_layers[i](x * x_mask)
|
80 |
+
x = self.norm_layers[i](x)
|
81 |
+
x = self.relu_drop(x)
|
82 |
+
x = x_org + self.proj(x)
|
83 |
+
return x * x_mask
|
84 |
+
|
85 |
+
|
86 |
+
class DDSConv(nn.Module):
|
87 |
+
"""
|
88 |
+
Dialted and Depth-Separable Convolution
|
89 |
+
"""
|
90 |
+
|
91 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
92 |
+
super().__init__()
|
93 |
+
self.channels = channels
|
94 |
+
self.kernel_size = kernel_size
|
95 |
+
self.n_layers = n_layers
|
96 |
+
self.p_dropout = p_dropout
|
97 |
+
|
98 |
+
self.drop = nn.Dropout(p_dropout)
|
99 |
+
self.convs_sep = nn.ModuleList()
|
100 |
+
self.convs_1x1 = nn.ModuleList()
|
101 |
+
self.norms_1 = nn.ModuleList()
|
102 |
+
self.norms_2 = nn.ModuleList()
|
103 |
+
for i in range(n_layers):
|
104 |
+
dilation = kernel_size**i
|
105 |
+
padding = (kernel_size * dilation - dilation) // 2
|
106 |
+
self.convs_sep.append(
|
107 |
+
nn.Conv1d(
|
108 |
+
channels,
|
109 |
+
channels,
|
110 |
+
kernel_size,
|
111 |
+
groups=channels,
|
112 |
+
dilation=dilation,
|
113 |
+
padding=padding,
|
114 |
+
)
|
115 |
+
)
|
116 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
117 |
+
self.norms_1.append(LayerNorm(channels))
|
118 |
+
self.norms_2.append(LayerNorm(channels))
|
119 |
+
|
120 |
+
def forward(self, x, x_mask, g=None):
|
121 |
+
if g is not None:
|
122 |
+
x = x + g
|
123 |
+
for i in range(self.n_layers):
|
124 |
+
y = self.convs_sep[i](x * x_mask)
|
125 |
+
y = self.norms_1[i](y)
|
126 |
+
y = F.gelu(y)
|
127 |
+
y = self.convs_1x1[i](y)
|
128 |
+
y = self.norms_2[i](y)
|
129 |
+
y = F.gelu(y)
|
130 |
+
y = self.drop(y)
|
131 |
+
x = x + y
|
132 |
+
return x * x_mask
|
133 |
+
|
134 |
+
|
135 |
+
class WN(torch.nn.Module):
|
136 |
+
def __init__(
|
137 |
+
self,
|
138 |
+
hidden_channels,
|
139 |
+
kernel_size,
|
140 |
+
dilation_rate,
|
141 |
+
n_layers,
|
142 |
+
gin_channels=0,
|
143 |
+
p_dropout=0,
|
144 |
+
):
|
145 |
+
super(WN, self).__init__()
|
146 |
+
assert kernel_size % 2 == 1
|
147 |
+
self.hidden_channels = hidden_channels
|
148 |
+
self.kernel_size = (kernel_size,)
|
149 |
+
self.dilation_rate = dilation_rate
|
150 |
+
self.n_layers = n_layers
|
151 |
+
self.gin_channels = gin_channels
|
152 |
+
self.p_dropout = p_dropout
|
153 |
+
|
154 |
+
self.in_layers = torch.nn.ModuleList()
|
155 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
156 |
+
self.drop = nn.Dropout(p_dropout)
|
157 |
+
|
158 |
+
if gin_channels != 0:
|
159 |
+
cond_layer = torch.nn.Conv1d(
|
160 |
+
gin_channels, 2 * hidden_channels * n_layers, 1
|
161 |
+
)
|
162 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
|
163 |
+
|
164 |
+
for i in range(n_layers):
|
165 |
+
dilation = dilation_rate**i
|
166 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
167 |
+
in_layer = torch.nn.Conv1d(
|
168 |
+
hidden_channels,
|
169 |
+
2 * hidden_channels,
|
170 |
+
kernel_size,
|
171 |
+
dilation=dilation,
|
172 |
+
padding=padding,
|
173 |
+
)
|
174 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
|
175 |
+
self.in_layers.append(in_layer)
|
176 |
+
|
177 |
+
# last one is not necessary
|
178 |
+
if i < n_layers - 1:
|
179 |
+
res_skip_channels = 2 * hidden_channels
|
180 |
+
else:
|
181 |
+
res_skip_channels = hidden_channels
|
182 |
+
|
183 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
184 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
|
185 |
+
self.res_skip_layers.append(res_skip_layer)
|
186 |
+
|
187 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
188 |
+
output = torch.zeros_like(x)
|
189 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
190 |
+
|
191 |
+
if g is not None:
|
192 |
+
g = self.cond_layer(g)
|
193 |
+
|
194 |
+
for i in range(self.n_layers):
|
195 |
+
x_in = self.in_layers[i](x)
|
196 |
+
if g is not None:
|
197 |
+
cond_offset = i * 2 * self.hidden_channels
|
198 |
+
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
199 |
+
else:
|
200 |
+
g_l = torch.zeros_like(x_in)
|
201 |
+
|
202 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
|
203 |
+
acts = self.drop(acts)
|
204 |
+
|
205 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
206 |
+
if i < self.n_layers - 1:
|
207 |
+
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
208 |
+
x = (x + res_acts) * x_mask
|
209 |
+
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
210 |
+
else:
|
211 |
+
output = output + res_skip_acts
|
212 |
+
return output * x_mask
|
213 |
+
|
214 |
+
def remove_weight_norm(self):
|
215 |
+
if self.gin_channels != 0:
|
216 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
217 |
+
for l in self.in_layers:
|
218 |
+
torch.nn.utils.remove_weight_norm(l)
|
219 |
+
for l in self.res_skip_layers:
|
220 |
+
torch.nn.utils.remove_weight_norm(l)
|
221 |
+
|
222 |
+
|
223 |
+
class ResBlock1(torch.nn.Module):
|
224 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
225 |
+
super(ResBlock1, self).__init__()
|
226 |
+
self.convs1 = nn.ModuleList(
|
227 |
+
[
|
228 |
+
weight_norm(
|
229 |
+
Conv1d(
|
230 |
+
channels,
|
231 |
+
channels,
|
232 |
+
kernel_size,
|
233 |
+
1,
|
234 |
+
dilation=dilation[0],
|
235 |
+
padding=get_padding(kernel_size, dilation[0]),
|
236 |
+
)
|
237 |
+
),
|
238 |
+
weight_norm(
|
239 |
+
Conv1d(
|
240 |
+
channels,
|
241 |
+
channels,
|
242 |
+
kernel_size,
|
243 |
+
1,
|
244 |
+
dilation=dilation[1],
|
245 |
+
padding=get_padding(kernel_size, dilation[1]),
|
246 |
+
)
|
247 |
+
),
|
248 |
+
weight_norm(
|
249 |
+
Conv1d(
|
250 |
+
channels,
|
251 |
+
channels,
|
252 |
+
kernel_size,
|
253 |
+
1,
|
254 |
+
dilation=dilation[2],
|
255 |
+
padding=get_padding(kernel_size, dilation[2]),
|
256 |
+
)
|
257 |
+
),
|
258 |
+
]
|
259 |
+
)
|
260 |
+
self.convs1.apply(init_weights)
|
261 |
+
|
262 |
+
self.convs2 = nn.ModuleList(
|
263 |
+
[
|
264 |
+
weight_norm(
|
265 |
+
Conv1d(
|
266 |
+
channels,
|
267 |
+
channels,
|
268 |
+
kernel_size,
|
269 |
+
1,
|
270 |
+
dilation=1,
|
271 |
+
padding=get_padding(kernel_size, 1),
|
272 |
+
)
|
273 |
+
),
|
274 |
+
weight_norm(
|
275 |
+
Conv1d(
|
276 |
+
channels,
|
277 |
+
channels,
|
278 |
+
kernel_size,
|
279 |
+
1,
|
280 |
+
dilation=1,
|
281 |
+
padding=get_padding(kernel_size, 1),
|
282 |
+
)
|
283 |
+
),
|
284 |
+
weight_norm(
|
285 |
+
Conv1d(
|
286 |
+
channels,
|
287 |
+
channels,
|
288 |
+
kernel_size,
|
289 |
+
1,
|
290 |
+
dilation=1,
|
291 |
+
padding=get_padding(kernel_size, 1),
|
292 |
+
)
|
293 |
+
),
|
294 |
+
]
|
295 |
+
)
|
296 |
+
self.convs2.apply(init_weights)
|
297 |
+
|
298 |
+
def forward(self, x, x_mask=None):
|
299 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
300 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
301 |
+
if x_mask is not None:
|
302 |
+
xt = xt * x_mask
|
303 |
+
xt = c1(xt)
|
304 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
305 |
+
if x_mask is not None:
|
306 |
+
xt = xt * x_mask
|
307 |
+
xt = c2(xt)
|
308 |
+
x = xt + x
|
309 |
+
if x_mask is not None:
|
310 |
+
x = x * x_mask
|
311 |
+
return x
|
312 |
+
|
313 |
+
def remove_weight_norm(self):
|
314 |
+
for l in self.convs1:
|
315 |
+
remove_weight_norm(l)
|
316 |
+
for l in self.convs2:
|
317 |
+
remove_weight_norm(l)
|
318 |
+
|
319 |
+
|
320 |
+
class ResBlock2(torch.nn.Module):
|
321 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
322 |
+
super(ResBlock2, self).__init__()
|
323 |
+
self.convs = nn.ModuleList(
|
324 |
+
[
|
325 |
+
weight_norm(
|
326 |
+
Conv1d(
|
327 |
+
channels,
|
328 |
+
channels,
|
329 |
+
kernel_size,
|
330 |
+
1,
|
331 |
+
dilation=dilation[0],
|
332 |
+
padding=get_padding(kernel_size, dilation[0]),
|
333 |
+
)
|
334 |
+
),
|
335 |
+
weight_norm(
|
336 |
+
Conv1d(
|
337 |
+
channels,
|
338 |
+
channels,
|
339 |
+
kernel_size,
|
340 |
+
1,
|
341 |
+
dilation=dilation[1],
|
342 |
+
padding=get_padding(kernel_size, dilation[1]),
|
343 |
+
)
|
344 |
+
),
|
345 |
+
]
|
346 |
+
)
|
347 |
+
self.convs.apply(init_weights)
|
348 |
+
|
349 |
+
def forward(self, x, x_mask=None):
|
350 |
+
for c in self.convs:
|
351 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
352 |
+
if x_mask is not None:
|
353 |
+
xt = xt * x_mask
|
354 |
+
xt = c(xt)
|
355 |
+
x = xt + x
|
356 |
+
if x_mask is not None:
|
357 |
+
x = x * x_mask
|
358 |
+
return x
|
359 |
+
|
360 |
+
def remove_weight_norm(self):
|
361 |
+
for l in self.convs:
|
362 |
+
remove_weight_norm(l)
|
363 |
+
|
364 |
+
|
365 |
+
class Log(nn.Module):
|
366 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
367 |
+
if not reverse:
|
368 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
369 |
+
logdet = torch.sum(-y, [1, 2])
|
370 |
+
return y, logdet
|
371 |
+
else:
|
372 |
+
x = torch.exp(x) * x_mask
|
373 |
+
return x
|
374 |
+
|
375 |
+
|
376 |
+
class Flip(nn.Module):
|
377 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
378 |
+
x = torch.flip(x, [1])
|
379 |
+
if not reverse:
|
380 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
381 |
+
return x, logdet
|
382 |
+
else:
|
383 |
+
return x
|
384 |
+
|
385 |
+
|
386 |
+
class ElementwiseAffine(nn.Module):
|
387 |
+
def __init__(self, channels):
|
388 |
+
super().__init__()
|
389 |
+
self.channels = channels
|
390 |
+
self.m = nn.Parameter(torch.zeros(channels, 1))
|
391 |
+
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
392 |
+
|
393 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
394 |
+
if not reverse:
|
395 |
+
y = self.m + torch.exp(self.logs) * x
|
396 |
+
y = y * x_mask
|
397 |
+
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
398 |
+
return y, logdet
|
399 |
+
else:
|
400 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
401 |
+
return x
|
402 |
+
|
403 |
+
|
404 |
+
class ResidualCouplingLayer(nn.Module):
|
405 |
+
def __init__(
|
406 |
+
self,
|
407 |
+
channels,
|
408 |
+
hidden_channels,
|
409 |
+
kernel_size,
|
410 |
+
dilation_rate,
|
411 |
+
n_layers,
|
412 |
+
p_dropout=0,
|
413 |
+
gin_channels=0,
|
414 |
+
mean_only=False,
|
415 |
+
):
|
416 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
417 |
+
super().__init__()
|
418 |
+
self.channels = channels
|
419 |
+
self.hidden_channels = hidden_channels
|
420 |
+
self.kernel_size = kernel_size
|
421 |
+
self.dilation_rate = dilation_rate
|
422 |
+
self.n_layers = n_layers
|
423 |
+
self.half_channels = channels // 2
|
424 |
+
self.mean_only = mean_only
|
425 |
+
|
426 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
427 |
+
self.enc = WN(
|
428 |
+
hidden_channels,
|
429 |
+
kernel_size,
|
430 |
+
dilation_rate,
|
431 |
+
n_layers,
|
432 |
+
p_dropout=p_dropout,
|
433 |
+
gin_channels=gin_channels,
|
434 |
+
)
|
435 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
436 |
+
self.post.weight.data.zero_()
|
437 |
+
self.post.bias.data.zero_()
|
438 |
+
|
439 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
440 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
441 |
+
h = self.pre(x0) * x_mask
|
442 |
+
h = self.enc(h, x_mask, g=g)
|
443 |
+
stats = self.post(h) * x_mask
|
444 |
+
if not self.mean_only:
|
445 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
446 |
+
else:
|
447 |
+
m = stats
|
448 |
+
logs = torch.zeros_like(m)
|
449 |
+
|
450 |
+
if not reverse:
|
451 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
452 |
+
x = torch.cat([x0, x1], 1)
|
453 |
+
logdet = torch.sum(logs, [1, 2])
|
454 |
+
return x, logdet
|
455 |
+
else:
|
456 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
457 |
+
x = torch.cat([x0, x1], 1)
|
458 |
+
return x
|
459 |
+
|
460 |
+
|
461 |
+
class ConvFlow(nn.Module):
|
462 |
+
def __init__(
|
463 |
+
self,
|
464 |
+
in_channels,
|
465 |
+
filter_channels,
|
466 |
+
kernel_size,
|
467 |
+
n_layers,
|
468 |
+
num_bins=10,
|
469 |
+
tail_bound=5.0,
|
470 |
+
):
|
471 |
+
super().__init__()
|
472 |
+
self.in_channels = in_channels
|
473 |
+
self.filter_channels = filter_channels
|
474 |
+
self.kernel_size = kernel_size
|
475 |
+
self.n_layers = n_layers
|
476 |
+
self.num_bins = num_bins
|
477 |
+
self.tail_bound = tail_bound
|
478 |
+
self.half_channels = in_channels // 2
|
479 |
+
|
480 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
481 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
482 |
+
self.proj = nn.Conv1d(
|
483 |
+
filter_channels, self.half_channels * (num_bins * 3 - 1), 1
|
484 |
+
)
|
485 |
+
self.proj.weight.data.zero_()
|
486 |
+
self.proj.bias.data.zero_()
|
487 |
+
|
488 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
489 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
490 |
+
h = self.pre(x0)
|
491 |
+
h = self.convs(h, x_mask, g=g)
|
492 |
+
h = self.proj(h) * x_mask
|
493 |
+
|
494 |
+
b, c, t = x0.shape
|
495 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
496 |
+
|
497 |
+
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
498 |
+
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
|
499 |
+
self.filter_channels
|
500 |
+
)
|
501 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
502 |
+
|
503 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(
|
504 |
+
x1,
|
505 |
+
unnormalized_widths,
|
506 |
+
unnormalized_heights,
|
507 |
+
unnormalized_derivatives,
|
508 |
+
inverse=reverse,
|
509 |
+
tails="linear",
|
510 |
+
tail_bound=self.tail_bound,
|
511 |
+
)
|
512 |
+
|
513 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
514 |
+
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
515 |
+
if not reverse:
|
516 |
+
return x, logdet
|
517 |
+
else:
|
518 |
+
return x
|
519 |
+
|
520 |
+
|
521 |
+
class LinearNorm(nn.Module):
|
522 |
+
def __init__(
|
523 |
+
self,
|
524 |
+
in_channels,
|
525 |
+
out_channels,
|
526 |
+
bias=True,
|
527 |
+
spectral_norm=False,
|
528 |
+
):
|
529 |
+
super(LinearNorm, self).__init__()
|
530 |
+
self.fc = nn.Linear(in_channels, out_channels, bias)
|
531 |
+
|
532 |
+
if spectral_norm:
|
533 |
+
self.fc = nn.utils.spectral_norm(self.fc)
|
534 |
+
|
535 |
+
def forward(self, input):
|
536 |
+
out = self.fc(input)
|
537 |
+
return out
|
538 |
+
|
539 |
+
|
540 |
+
class Mish(nn.Module):
|
541 |
+
def __init__(self):
|
542 |
+
super(Mish, self).__init__()
|
543 |
+
|
544 |
+
def forward(self, x):
|
545 |
+
return x * torch.tanh(F.softplus(x))
|
546 |
+
|
547 |
+
|
548 |
+
class Conv1dGLU(nn.Module):
|
549 |
+
"""
|
550 |
+
Conv1d + GLU(Gated Linear Unit) with residual connection.
|
551 |
+
For GLU refer to https://arxiv.org/abs/1612.08083 paper.
|
552 |
+
"""
|
553 |
+
|
554 |
+
def __init__(self, in_channels, out_channels, kernel_size, dropout):
|
555 |
+
super(Conv1dGLU, self).__init__()
|
556 |
+
self.out_channels = out_channels
|
557 |
+
self.conv1 = ConvNorm(in_channels, 2 * out_channels, kernel_size=kernel_size)
|
558 |
+
self.dropout = nn.Dropout(dropout)
|
559 |
+
|
560 |
+
def forward(self, x):
|
561 |
+
residual = x
|
562 |
+
x = self.conv1(x)
|
563 |
+
x1, x2 = torch.split(x, split_size_or_sections=self.out_channels, dim=1)
|
564 |
+
x = x1 * torch.sigmoid(x2)
|
565 |
+
x = residual + self.dropout(x)
|
566 |
+
return x
|
567 |
+
|
568 |
+
|
569 |
+
class ConvNorm(nn.Module):
|
570 |
+
def __init__(
|
571 |
+
self,
|
572 |
+
in_channels,
|
573 |
+
out_channels,
|
574 |
+
kernel_size=1,
|
575 |
+
stride=1,
|
576 |
+
padding=None,
|
577 |
+
dilation=1,
|
578 |
+
bias=True,
|
579 |
+
spectral_norm=False,
|
580 |
+
):
|
581 |
+
super(ConvNorm, self).__init__()
|
582 |
+
|
583 |
+
if padding is None:
|
584 |
+
assert kernel_size % 2 == 1
|
585 |
+
padding = int(dilation * (kernel_size - 1) / 2)
|
586 |
+
|
587 |
+
self.conv = torch.nn.Conv1d(
|
588 |
+
in_channels,
|
589 |
+
out_channels,
|
590 |
+
kernel_size=kernel_size,
|
591 |
+
stride=stride,
|
592 |
+
padding=padding,
|
593 |
+
dilation=dilation,
|
594 |
+
bias=bias,
|
595 |
+
)
|
596 |
+
|
597 |
+
if spectral_norm:
|
598 |
+
self.conv = nn.utils.spectral_norm(self.conv)
|
599 |
+
|
600 |
+
def forward(self, input):
|
601 |
+
out = self.conv(input)
|
602 |
+
return out
|
603 |
+
|
604 |
+
|
605 |
+
class MultiHeadAttention(nn.Module):
|
606 |
+
"""Multi-Head Attention module"""
|
607 |
+
|
608 |
+
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.0, spectral_norm=False):
|
609 |
+
super().__init__()
|
610 |
+
|
611 |
+
self.n_head = n_head
|
612 |
+
self.d_k = d_k
|
613 |
+
self.d_v = d_v
|
614 |
+
|
615 |
+
self.w_qs = nn.Linear(d_model, n_head * d_k)
|
616 |
+
self.w_ks = nn.Linear(d_model, n_head * d_k)
|
617 |
+
self.w_vs = nn.Linear(d_model, n_head * d_v)
|
618 |
+
|
619 |
+
self.attention = ScaledDotProductAttention(
|
620 |
+
temperature=np.power(d_model, 0.5), dropout=dropout
|
621 |
+
)
|
622 |
+
|
623 |
+
self.fc = nn.Linear(n_head * d_v, d_model)
|
624 |
+
self.dropout = nn.Dropout(dropout)
|
625 |
+
|
626 |
+
if spectral_norm:
|
627 |
+
self.w_qs = nn.utils.spectral_norm(self.w_qs)
|
628 |
+
self.w_ks = nn.utils.spectral_norm(self.w_ks)
|
629 |
+
self.w_vs = nn.utils.spectral_norm(self.w_vs)
|
630 |
+
self.fc = nn.utils.spectral_norm(self.fc)
|
631 |
+
|
632 |
+
def forward(self, x, mask=None):
|
633 |
+
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
|
634 |
+
sz_b, len_x, _ = x.size()
|
635 |
+
|
636 |
+
residual = x
|
637 |
+
|
638 |
+
q = self.w_qs(x).view(sz_b, len_x, n_head, d_k)
|
639 |
+
k = self.w_ks(x).view(sz_b, len_x, n_head, d_k)
|
640 |
+
v = self.w_vs(x).view(sz_b, len_x, n_head, d_v)
|
641 |
+
q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_x, d_k) # (n*b) x lq x dk
|
642 |
+
k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_x, d_k) # (n*b) x lk x dk
|
643 |
+
v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_x, d_v) # (n*b) x lv x dv
|
644 |
+
|
645 |
+
if mask is not None:
|
646 |
+
slf_mask = mask.repeat(n_head, 1, 1) # (n*b) x .. x ..
|
647 |
+
else:
|
648 |
+
slf_mask = None
|
649 |
+
output, attn = self.attention(q, k, v, mask=slf_mask)
|
650 |
+
|
651 |
+
output = output.view(n_head, sz_b, len_x, d_v)
|
652 |
+
output = (
|
653 |
+
output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_x, -1)
|
654 |
+
) # b x lq x (n*dv)
|
655 |
+
|
656 |
+
output = self.fc(output)
|
657 |
+
|
658 |
+
output = self.dropout(output) + residual
|
659 |
+
return output, attn
|
660 |
+
|
661 |
+
|
662 |
+
class ScaledDotProductAttention(nn.Module):
|
663 |
+
"""Scaled Dot-Product Attention"""
|
664 |
+
|
665 |
+
def __init__(self, temperature, dropout):
|
666 |
+
super().__init__()
|
667 |
+
self.temperature = temperature
|
668 |
+
self.softmax = nn.Softmax(dim=2)
|
669 |
+
self.dropout = nn.Dropout(dropout)
|
670 |
+
|
671 |
+
def forward(self, q, k, v, mask=None):
|
672 |
+
attn = torch.bmm(q, k.transpose(1, 2))
|
673 |
+
attn = attn / self.temperature
|
674 |
+
|
675 |
+
if mask is not None:
|
676 |
+
attn = attn.masked_fill(mask, -np.inf)
|
677 |
+
|
678 |
+
attn = self.softmax(attn)
|
679 |
+
p_attn = self.dropout(attn)
|
680 |
+
|
681 |
+
output = torch.bmm(p_attn, v)
|
682 |
+
return output, attn
|
683 |
+
|
684 |
+
|
685 |
+
class MelStyleEncoder(nn.Module):
|
686 |
+
"""MelStyleEncoder"""
|
687 |
+
|
688 |
+
def __init__(
|
689 |
+
self,
|
690 |
+
n_mel_channels=80,
|
691 |
+
style_hidden=128,
|
692 |
+
style_vector_dim=256,
|
693 |
+
style_kernel_size=5,
|
694 |
+
style_head=2,
|
695 |
+
dropout=0.1,
|
696 |
+
):
|
697 |
+
super(MelStyleEncoder, self).__init__()
|
698 |
+
self.in_dim = n_mel_channels
|
699 |
+
self.hidden_dim = style_hidden
|
700 |
+
self.out_dim = style_vector_dim
|
701 |
+
self.kernel_size = style_kernel_size
|
702 |
+
self.n_head = style_head
|
703 |
+
self.dropout = dropout
|
704 |
+
|
705 |
+
self.spectral = nn.Sequential(
|
706 |
+
LinearNorm(self.in_dim, self.hidden_dim),
|
707 |
+
Mish(),
|
708 |
+
nn.Dropout(self.dropout),
|
709 |
+
LinearNorm(self.hidden_dim, self.hidden_dim),
|
710 |
+
Mish(),
|
711 |
+
nn.Dropout(self.dropout),
|
712 |
+
)
|
713 |
+
|
714 |
+
self.temporal = nn.Sequential(
|
715 |
+
Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
|
716 |
+
Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
|
717 |
+
)
|
718 |
+
|
719 |
+
self.slf_attn = MultiHeadAttention(
|
720 |
+
self.n_head,
|
721 |
+
self.hidden_dim,
|
722 |
+
self.hidden_dim // self.n_head,
|
723 |
+
self.hidden_dim // self.n_head,
|
724 |
+
self.dropout,
|
725 |
+
)
|
726 |
+
|
727 |
+
self.fc = LinearNorm(self.hidden_dim, self.out_dim)
|
728 |
+
|
729 |
+
def temporal_avg_pool(self, x, mask=None):
|
730 |
+
if mask is None:
|
731 |
+
out = torch.mean(x, dim=1)
|
732 |
+
else:
|
733 |
+
len_ = (~mask).sum(dim=1).unsqueeze(1)
|
734 |
+
x = x.masked_fill(mask.unsqueeze(-1), 0)
|
735 |
+
x = x.sum(dim=1)
|
736 |
+
out = torch.div(x, len_)
|
737 |
+
return out
|
738 |
+
|
739 |
+
def forward(self, x, mask=None):
|
740 |
+
x = x.transpose(1, 2)
|
741 |
+
if mask is not None:
|
742 |
+
mask = (mask.int() == 0).squeeze(1)
|
743 |
+
max_len = x.shape[1]
|
744 |
+
slf_attn_mask = (
|
745 |
+
mask.unsqueeze(1).expand(-1, max_len, -1) if mask is not None else None
|
746 |
+
)
|
747 |
+
|
748 |
+
# spectral
|
749 |
+
x = self.spectral(x)
|
750 |
+
# temporal
|
751 |
+
x = x.transpose(1, 2)
|
752 |
+
x = self.temporal(x)
|
753 |
+
x = x.transpose(1, 2)
|
754 |
+
# self-attention
|
755 |
+
if mask is not None:
|
756 |
+
x = x.masked_fill(mask.unsqueeze(-1), 0)
|
757 |
+
x, _ = self.slf_attn(x, mask=slf_attn_mask)
|
758 |
+
# fc
|
759 |
+
x = self.fc(x)
|
760 |
+
# temoral average pooling
|
761 |
+
w = self.temporal_avg_pool(x, mask=mask)
|
762 |
+
|
763 |
+
return w.unsqueeze(-1)
|
764 |
+
|
765 |
+
|
766 |
+
class MelStyleEncoderVAE(nn.Module):
|
767 |
+
def __init__(self, spec_channels, z_latent_dim, emb_dim):
|
768 |
+
super().__init__()
|
769 |
+
self.ref_encoder = MelStyleEncoder(spec_channels, style_vector_dim=emb_dim)
|
770 |
+
self.fc1 = nn.Linear(emb_dim, z_latent_dim)
|
771 |
+
self.fc2 = nn.Linear(emb_dim, z_latent_dim)
|
772 |
+
self.fc3 = nn.Linear(z_latent_dim, emb_dim)
|
773 |
+
self.z_latent_dim = z_latent_dim
|
774 |
+
|
775 |
+
def reparameterize(self, mu, logvar):
|
776 |
+
if self.training:
|
777 |
+
std = torch.exp(0.5 * logvar)
|
778 |
+
eps = torch.randn_like(std)
|
779 |
+
return eps.mul(std).add_(mu)
|
780 |
+
else:
|
781 |
+
return mu
|
782 |
+
|
783 |
+
def forward(self, inputs, mask=None):
|
784 |
+
enc_out = self.ref_encoder(inputs.squeeze(-1), mask).squeeze(-1)
|
785 |
+
mu = self.fc1(enc_out)
|
786 |
+
logvar = self.fc2(enc_out)
|
787 |
+
posterior = D.Normal(mu, torch.exp(logvar))
|
788 |
+
kl_divergence = D.kl_divergence(
|
789 |
+
posterior, D.Normal(torch.zeros_like(mu), torch.ones_like(logvar))
|
790 |
+
)
|
791 |
+
loss_kl = kl_divergence.mean()
|
792 |
+
|
793 |
+
z = posterior.rsample()
|
794 |
+
style_embed = self.fc3(z)
|
795 |
+
|
796 |
+
return style_embed.unsqueeze(-1), loss_kl
|
797 |
+
|
798 |
+
def infer(self, inputs=None, random_sample=False, manual_latent=None):
|
799 |
+
if manual_latent is None:
|
800 |
+
if random_sample:
|
801 |
+
dev = next(self.parameters()).device
|
802 |
+
posterior = D.Normal(
|
803 |
+
torch.zeros(1, self.z_latent_dim, device=dev),
|
804 |
+
torch.ones(1, self.z_latent_dim, device=dev),
|
805 |
+
)
|
806 |
+
z = posterior.rsample()
|
807 |
+
else:
|
808 |
+
enc_out = self.ref_encoder(inputs.transpose(1, 2))
|
809 |
+
mu = self.fc1(enc_out)
|
810 |
+
z = mu
|
811 |
+
else:
|
812 |
+
z = manual_latent
|
813 |
+
style_embed = self.fc3(z)
|
814 |
+
return style_embed.unsqueeze(-1), z
|
815 |
+
|
816 |
+
|
817 |
+
class ActNorm(nn.Module):
|
818 |
+
def __init__(self, channels, ddi=False, **kwargs):
|
819 |
+
super().__init__()
|
820 |
+
self.channels = channels
|
821 |
+
self.initialized = not ddi
|
822 |
+
|
823 |
+
self.logs = nn.Parameter(torch.zeros(1, channels, 1))
|
824 |
+
self.bias = nn.Parameter(torch.zeros(1, channels, 1))
|
825 |
+
|
826 |
+
def forward(self, x, x_mask=None, g=None, reverse=False, **kwargs):
|
827 |
+
if x_mask is None:
|
828 |
+
x_mask = torch.ones(x.size(0), 1, x.size(2)).to(
|
829 |
+
device=x.device, dtype=x.dtype
|
830 |
+
)
|
831 |
+
x_len = torch.sum(x_mask, [1, 2])
|
832 |
+
if not self.initialized:
|
833 |
+
self.initialize(x, x_mask)
|
834 |
+
self.initialized = True
|
835 |
+
|
836 |
+
if reverse:
|
837 |
+
z = (x - self.bias) * torch.exp(-self.logs) * x_mask
|
838 |
+
logdet = None
|
839 |
+
return z
|
840 |
+
else:
|
841 |
+
z = (self.bias + torch.exp(self.logs) * x) * x_mask
|
842 |
+
logdet = torch.sum(self.logs) * x_len # [b]
|
843 |
+
return z, logdet
|
844 |
+
|
845 |
+
def store_inverse(self):
|
846 |
+
pass
|
847 |
+
|
848 |
+
def set_ddi(self, ddi):
|
849 |
+
self.initialized = not ddi
|
850 |
+
|
851 |
+
def initialize(self, x, x_mask):
|
852 |
+
with torch.no_grad():
|
853 |
+
denom = torch.sum(x_mask, [0, 2])
|
854 |
+
m = torch.sum(x * x_mask, [0, 2]) / denom
|
855 |
+
m_sq = torch.sum(x * x * x_mask, [0, 2]) / denom
|
856 |
+
v = m_sq - (m**2)
|
857 |
+
logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6))
|
858 |
+
|
859 |
+
bias_init = (
|
860 |
+
(-m * torch.exp(-logs)).view(*self.bias.shape).to(dtype=self.bias.dtype)
|
861 |
+
)
|
862 |
+
logs_init = (-logs).view(*self.logs.shape).to(dtype=self.logs.dtype)
|
863 |
+
|
864 |
+
self.bias.data.copy_(bias_init)
|
865 |
+
self.logs.data.copy_(logs_init)
|
866 |
+
|
867 |
+
|
868 |
+
class InvConvNear(nn.Module):
|
869 |
+
def __init__(self, channels, n_split=4, no_jacobian=False, **kwargs):
|
870 |
+
super().__init__()
|
871 |
+
assert n_split % 2 == 0
|
872 |
+
self.channels = channels
|
873 |
+
self.n_split = n_split
|
874 |
+
self.no_jacobian = no_jacobian
|
875 |
+
|
876 |
+
w_init = torch.linalg.qr(
|
877 |
+
torch.FloatTensor(self.n_split, self.n_split).normal_()
|
878 |
+
)[0]
|
879 |
+
if torch.det(w_init) < 0:
|
880 |
+
w_init[:, 0] = -1 * w_init[:, 0]
|
881 |
+
self.weight = nn.Parameter(w_init)
|
882 |
+
|
883 |
+
def forward(self, x, x_mask=None, g=None, reverse=False, **kwargs):
|
884 |
+
b, c, t = x.size()
|
885 |
+
assert c % self.n_split == 0
|
886 |
+
if x_mask is None:
|
887 |
+
x_mask = 1
|
888 |
+
x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t
|
889 |
+
else:
|
890 |
+
x_len = torch.sum(x_mask, [1, 2])
|
891 |
+
|
892 |
+
x = x.view(b, 2, c // self.n_split, self.n_split // 2, t)
|
893 |
+
x = (
|
894 |
+
x.permute(0, 1, 3, 2, 4)
|
895 |
+
.contiguous()
|
896 |
+
.view(b, self.n_split, c // self.n_split, t)
|
897 |
+
)
|
898 |
+
|
899 |
+
if reverse:
|
900 |
+
if hasattr(self, "weight_inv"):
|
901 |
+
weight = self.weight_inv
|
902 |
+
else:
|
903 |
+
weight = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype)
|
904 |
+
logdet = None
|
905 |
+
else:
|
906 |
+
weight = self.weight
|
907 |
+
if self.no_jacobian:
|
908 |
+
logdet = 0
|
909 |
+
else:
|
910 |
+
logdet = torch.logdet(self.weight) * (c / self.n_split) * x_len # [b]
|
911 |
+
|
912 |
+
weight = weight.view(self.n_split, self.n_split, 1, 1)
|
913 |
+
z = F.conv2d(x, weight)
|
914 |
+
|
915 |
+
z = z.view(b, 2, self.n_split // 2, c // self.n_split, t)
|
916 |
+
z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask
|
917 |
+
if reverse:
|
918 |
+
return z
|
919 |
+
else:
|
920 |
+
return z, logdet
|
921 |
+
|
922 |
+
def store_inverse(self):
|
923 |
+
self.weight_inv = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype)
|
module/mrte_model.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This is Multi-reference timbre encoder
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn.utils import remove_weight_norm, weight_norm
|
6 |
+
from module.attentions import MultiHeadAttention
|
7 |
+
|
8 |
+
|
9 |
+
class MRTE(nn.Module):
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
content_enc_channels=192,
|
13 |
+
hidden_size=512,
|
14 |
+
out_channels=192,
|
15 |
+
kernel_size=5,
|
16 |
+
n_heads=4,
|
17 |
+
ge_layer=2,
|
18 |
+
):
|
19 |
+
super(MRTE, self).__init__()
|
20 |
+
self.cross_attention = MultiHeadAttention(hidden_size, hidden_size, n_heads)
|
21 |
+
self.c_pre = nn.Conv1d(content_enc_channels, hidden_size, 1)
|
22 |
+
self.text_pre = nn.Conv1d(content_enc_channels, hidden_size, 1)
|
23 |
+
self.c_post = nn.Conv1d(hidden_size, out_channels, 1)
|
24 |
+
|
25 |
+
def forward(self, ssl_enc, ssl_mask, text, text_mask, ge, test=None):
|
26 |
+
if ge == None:
|
27 |
+
ge = 0
|
28 |
+
attn_mask = text_mask.unsqueeze(2) * ssl_mask.unsqueeze(-1)
|
29 |
+
|
30 |
+
ssl_enc = self.c_pre(ssl_enc * ssl_mask)
|
31 |
+
text_enc = self.text_pre(text * text_mask)
|
32 |
+
if test != None:
|
33 |
+
if test == 0:
|
34 |
+
x = (
|
35 |
+
self.cross_attention(
|
36 |
+
ssl_enc * ssl_mask, text_enc * text_mask, attn_mask
|
37 |
+
)
|
38 |
+
+ ssl_enc
|
39 |
+
+ ge
|
40 |
+
)
|
41 |
+
elif test == 1:
|
42 |
+
x = ssl_enc + ge
|
43 |
+
elif test == 2:
|
44 |
+
x = (
|
45 |
+
self.cross_attention(
|
46 |
+
ssl_enc * 0 * ssl_mask, text_enc * text_mask, attn_mask
|
47 |
+
)
|
48 |
+
+ ge
|
49 |
+
)
|
50 |
+
else:
|
51 |
+
raise ValueError("test should be 0,1,2")
|
52 |
+
else:
|
53 |
+
x = (
|
54 |
+
self.cross_attention(
|
55 |
+
ssl_enc * ssl_mask, text_enc * text_mask, attn_mask
|
56 |
+
)
|
57 |
+
+ ssl_enc
|
58 |
+
+ ge
|
59 |
+
)
|
60 |
+
x = self.c_post(x * ssl_mask)
|
61 |
+
return x
|
62 |
+
|
63 |
+
|
64 |
+
class SpeakerEncoder(torch.nn.Module):
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
mel_n_channels=80,
|
68 |
+
model_num_layers=2,
|
69 |
+
model_hidden_size=256,
|
70 |
+
model_embedding_size=256,
|
71 |
+
):
|
72 |
+
super(SpeakerEncoder, self).__init__()
|
73 |
+
self.lstm = nn.LSTM(
|
74 |
+
mel_n_channels, model_hidden_size, model_num_layers, batch_first=True
|
75 |
+
)
|
76 |
+
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
|
77 |
+
self.relu = nn.ReLU()
|
78 |
+
|
79 |
+
def forward(self, mels):
|
80 |
+
self.lstm.flatten_parameters()
|
81 |
+
_, (hidden, _) = self.lstm(mels.transpose(-1, -2))
|
82 |
+
embeds_raw = self.relu(self.linear(hidden[-1]))
|
83 |
+
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
|
84 |
+
|
85 |
+
|
86 |
+
class MELEncoder(nn.Module):
|
87 |
+
def __init__(
|
88 |
+
self,
|
89 |
+
in_channels,
|
90 |
+
out_channels,
|
91 |
+
hidden_channels,
|
92 |
+
kernel_size,
|
93 |
+
dilation_rate,
|
94 |
+
n_layers,
|
95 |
+
):
|
96 |
+
super().__init__()
|
97 |
+
self.in_channels = in_channels
|
98 |
+
self.out_channels = out_channels
|
99 |
+
self.hidden_channels = hidden_channels
|
100 |
+
self.kernel_size = kernel_size
|
101 |
+
self.dilation_rate = dilation_rate
|
102 |
+
self.n_layers = n_layers
|
103 |
+
|
104 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
105 |
+
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers)
|
106 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
# print(x.shape,x_lengths.shape)
|
110 |
+
x = self.pre(x)
|
111 |
+
x = self.enc(x)
|
112 |
+
x = self.proj(x)
|
113 |
+
return x
|
114 |
+
|
115 |
+
|
116 |
+
class WN(torch.nn.Module):
|
117 |
+
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers):
|
118 |
+
super(WN, self).__init__()
|
119 |
+
assert kernel_size % 2 == 1
|
120 |
+
self.hidden_channels = hidden_channels
|
121 |
+
self.kernel_size = kernel_size
|
122 |
+
self.dilation_rate = dilation_rate
|
123 |
+
self.n_layers = n_layers
|
124 |
+
|
125 |
+
self.in_layers = torch.nn.ModuleList()
|
126 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
127 |
+
|
128 |
+
for i in range(n_layers):
|
129 |
+
dilation = dilation_rate**i
|
130 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
131 |
+
in_layer = nn.Conv1d(
|
132 |
+
hidden_channels,
|
133 |
+
2 * hidden_channels,
|
134 |
+
kernel_size,
|
135 |
+
dilation=dilation,
|
136 |
+
padding=padding,
|
137 |
+
)
|
138 |
+
in_layer = weight_norm(in_layer)
|
139 |
+
self.in_layers.append(in_layer)
|
140 |
+
|
141 |
+
# last one is not necessary
|
142 |
+
if i < n_layers - 1:
|
143 |
+
res_skip_channels = 2 * hidden_channels
|
144 |
+
else:
|
145 |
+
res_skip_channels = hidden_channels
|
146 |
+
|
147 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
148 |
+
res_skip_layer = weight_norm(res_skip_layer, name="weight")
|
149 |
+
self.res_skip_layers.append(res_skip_layer)
|
150 |
+
|
151 |
+
def forward(self, x):
|
152 |
+
output = torch.zeros_like(x)
|
153 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
154 |
+
|
155 |
+
for i in range(self.n_layers):
|
156 |
+
x_in = self.in_layers[i](x)
|
157 |
+
|
158 |
+
acts = fused_add_tanh_sigmoid_multiply(x_in, n_channels_tensor)
|
159 |
+
|
160 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
161 |
+
if i < self.n_layers - 1:
|
162 |
+
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
163 |
+
x = x + res_acts
|
164 |
+
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
165 |
+
else:
|
166 |
+
output = output + res_skip_acts
|
167 |
+
return output
|
168 |
+
|
169 |
+
def remove_weight_norm(self):
|
170 |
+
for l in self.in_layers:
|
171 |
+
remove_weight_norm(l)
|
172 |
+
for l in self.res_skip_layers:
|
173 |
+
remove_weight_norm(l)
|
174 |
+
|
175 |
+
|
176 |
+
@torch.jit.script
|
177 |
+
def fused_add_tanh_sigmoid_multiply(input, n_channels):
|
178 |
+
n_channels_int = n_channels[0]
|
179 |
+
t_act = torch.tanh(input[:, :n_channels_int, :])
|
180 |
+
s_act = torch.sigmoid(input[:, n_channels_int:, :])
|
181 |
+
acts = t_act * s_act
|
182 |
+
return acts
|
183 |
+
|
184 |
+
|
185 |
+
if __name__ == "__main__":
|
186 |
+
content_enc = torch.randn(3, 192, 100)
|
187 |
+
content_mask = torch.ones(3, 1, 100)
|
188 |
+
ref_mel = torch.randn(3, 128, 30)
|
189 |
+
ref_mask = torch.ones(3, 1, 30)
|
190 |
+
model = MRTE()
|
191 |
+
out = model(content_enc, content_mask, ref_mel, ref_mask)
|
192 |
+
print(out.shape)
|
module/quantize.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
"""Residual vector quantizer implementation."""
|
8 |
+
|
9 |
+
from dataclasses import dataclass, field
|
10 |
+
import math
|
11 |
+
import typing as tp
|
12 |
+
|
13 |
+
import torch
|
14 |
+
from torch import nn
|
15 |
+
|
16 |
+
from module.core_vq import ResidualVectorQuantization
|
17 |
+
|
18 |
+
|
19 |
+
@dataclass
|
20 |
+
class QuantizedResult:
|
21 |
+
quantized: torch.Tensor
|
22 |
+
codes: torch.Tensor
|
23 |
+
bandwidth: torch.Tensor # bandwidth in kb/s used, per batch item.
|
24 |
+
penalty: tp.Optional[torch.Tensor] = None
|
25 |
+
metrics: dict = field(default_factory=dict)
|
26 |
+
|
27 |
+
|
28 |
+
class ResidualVectorQuantizer(nn.Module):
|
29 |
+
"""Residual Vector Quantizer.
|
30 |
+
Args:
|
31 |
+
dimension (int): Dimension of the codebooks.
|
32 |
+
n_q (int): Number of residual vector quantizers used.
|
33 |
+
bins (int): Codebook size.
|
34 |
+
decay (float): Decay for exponential moving average over the codebooks.
|
35 |
+
kmeans_init (bool): Whether to use kmeans to initialize the codebooks.
|
36 |
+
kmeans_iters (int): Number of iterations used for kmeans initialization.
|
37 |
+
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
|
38 |
+
that have an exponential moving average cluster size less than the specified threshold with
|
39 |
+
randomly selected vector from the current batch.
|
40 |
+
"""
|
41 |
+
|
42 |
+
def __init__(
|
43 |
+
self,
|
44 |
+
dimension: int = 256,
|
45 |
+
n_q: int = 8,
|
46 |
+
bins: int = 1024,
|
47 |
+
decay: float = 0.99,
|
48 |
+
kmeans_init: bool = True,
|
49 |
+
kmeans_iters: int = 50,
|
50 |
+
threshold_ema_dead_code: int = 2,
|
51 |
+
):
|
52 |
+
super().__init__()
|
53 |
+
self.n_q = n_q
|
54 |
+
self.dimension = dimension
|
55 |
+
self.bins = bins
|
56 |
+
self.decay = decay
|
57 |
+
self.kmeans_init = kmeans_init
|
58 |
+
self.kmeans_iters = kmeans_iters
|
59 |
+
self.threshold_ema_dead_code = threshold_ema_dead_code
|
60 |
+
self.vq = ResidualVectorQuantization(
|
61 |
+
dim=self.dimension,
|
62 |
+
codebook_size=self.bins,
|
63 |
+
num_quantizers=self.n_q,
|
64 |
+
decay=self.decay,
|
65 |
+
kmeans_init=self.kmeans_init,
|
66 |
+
kmeans_iters=self.kmeans_iters,
|
67 |
+
threshold_ema_dead_code=self.threshold_ema_dead_code,
|
68 |
+
)
|
69 |
+
|
70 |
+
def forward(
|
71 |
+
self,
|
72 |
+
x: torch.Tensor,
|
73 |
+
n_q: tp.Optional[int] = None,
|
74 |
+
layers: tp.Optional[list] = None,
|
75 |
+
) -> QuantizedResult:
|
76 |
+
"""Residual vector quantization on the given input tensor.
|
77 |
+
Args:
|
78 |
+
x (torch.Tensor): Input tensor.
|
79 |
+
n_q (int): Number of quantizer used to quantize. Default: All quantizers.
|
80 |
+
layers (list): Layer that need to return quantized. Defalt: None.
|
81 |
+
Returns:
|
82 |
+
QuantizedResult:
|
83 |
+
The quantized (or approximately quantized) representation with
|
84 |
+
the associated numbert quantizers and layer quantized required to return.
|
85 |
+
"""
|
86 |
+
n_q = n_q if n_q else self.n_q
|
87 |
+
if layers and max(layers) >= n_q:
|
88 |
+
raise ValueError(
|
89 |
+
f"Last layer index in layers: A {max(layers)}. Number of quantizers in RVQ: B {self.n_q}. A must less than B."
|
90 |
+
)
|
91 |
+
quantized, codes, commit_loss, quantized_list = self.vq(
|
92 |
+
x, n_q=n_q, layers=layers
|
93 |
+
)
|
94 |
+
return quantized, codes, torch.mean(commit_loss), quantized_list
|
95 |
+
|
96 |
+
def encode(
|
97 |
+
self, x: torch.Tensor, n_q: tp.Optional[int] = None, st: tp.Optional[int] = None
|
98 |
+
) -> torch.Tensor:
|
99 |
+
"""Encode a given input tensor with the specified sample rate at the given bandwidth.
|
100 |
+
The RVQ encode method sets the appropriate number of quantizer to use
|
101 |
+
and returns indices for each quantizer.
|
102 |
+
Args:
|
103 |
+
x (torch.Tensor): Input tensor.
|
104 |
+
n_q (int): Number of quantizer used to quantize. Default: All quantizers.
|
105 |
+
st (int): Start to encode input from which layers. Default: 0.
|
106 |
+
"""
|
107 |
+
n_q = n_q if n_q else self.n_q
|
108 |
+
st = st or 0
|
109 |
+
codes = self.vq.encode(x, n_q=n_q, st=st)
|
110 |
+
return codes
|
111 |
+
|
112 |
+
def decode(self, codes: torch.Tensor, st: int = 0) -> torch.Tensor:
|
113 |
+
"""Decode the given codes to the quantized representation.
|
114 |
+
Args:
|
115 |
+
codes (torch.Tensor): Input indices for each quantizer.
|
116 |
+
st (int): Start to decode input codes from which layers. Default: 0.
|
117 |
+
"""
|
118 |
+
quantized = self.vq.decode(codes, st=st)
|
119 |
+
return quantized
|
module/transforms.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
8 |
+
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
9 |
+
DEFAULT_MIN_DERIVATIVE = 1e-3
|
10 |
+
|
11 |
+
|
12 |
+
def piecewise_rational_quadratic_transform(
|
13 |
+
inputs,
|
14 |
+
unnormalized_widths,
|
15 |
+
unnormalized_heights,
|
16 |
+
unnormalized_derivatives,
|
17 |
+
inverse=False,
|
18 |
+
tails=None,
|
19 |
+
tail_bound=1.0,
|
20 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
21 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
22 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
23 |
+
):
|
24 |
+
if tails is None:
|
25 |
+
spline_fn = rational_quadratic_spline
|
26 |
+
spline_kwargs = {}
|
27 |
+
else:
|
28 |
+
spline_fn = unconstrained_rational_quadratic_spline
|
29 |
+
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
|
30 |
+
|
31 |
+
outputs, logabsdet = spline_fn(
|
32 |
+
inputs=inputs,
|
33 |
+
unnormalized_widths=unnormalized_widths,
|
34 |
+
unnormalized_heights=unnormalized_heights,
|
35 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
36 |
+
inverse=inverse,
|
37 |
+
min_bin_width=min_bin_width,
|
38 |
+
min_bin_height=min_bin_height,
|
39 |
+
min_derivative=min_derivative,
|
40 |
+
**spline_kwargs
|
41 |
+
)
|
42 |
+
return outputs, logabsdet
|
43 |
+
|
44 |
+
|
45 |
+
def searchsorted(bin_locations, inputs, eps=1e-6):
|
46 |
+
bin_locations[..., -1] += eps
|
47 |
+
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
48 |
+
|
49 |
+
|
50 |
+
def unconstrained_rational_quadratic_spline(
|
51 |
+
inputs,
|
52 |
+
unnormalized_widths,
|
53 |
+
unnormalized_heights,
|
54 |
+
unnormalized_derivatives,
|
55 |
+
inverse=False,
|
56 |
+
tails="linear",
|
57 |
+
tail_bound=1.0,
|
58 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
59 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
60 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
61 |
+
):
|
62 |
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
63 |
+
outside_interval_mask = ~inside_interval_mask
|
64 |
+
|
65 |
+
outputs = torch.zeros_like(inputs)
|
66 |
+
logabsdet = torch.zeros_like(inputs)
|
67 |
+
|
68 |
+
if tails == "linear":
|
69 |
+
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
70 |
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
71 |
+
unnormalized_derivatives[..., 0] = constant
|
72 |
+
unnormalized_derivatives[..., -1] = constant
|
73 |
+
|
74 |
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
75 |
+
logabsdet[outside_interval_mask] = 0
|
76 |
+
else:
|
77 |
+
raise RuntimeError("{} tails are not implemented.".format(tails))
|
78 |
+
|
79 |
+
(
|
80 |
+
outputs[inside_interval_mask],
|
81 |
+
logabsdet[inside_interval_mask],
|
82 |
+
) = rational_quadratic_spline(
|
83 |
+
inputs=inputs[inside_interval_mask],
|
84 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
85 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
86 |
+
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
87 |
+
inverse=inverse,
|
88 |
+
left=-tail_bound,
|
89 |
+
right=tail_bound,
|
90 |
+
bottom=-tail_bound,
|
91 |
+
top=tail_bound,
|
92 |
+
min_bin_width=min_bin_width,
|
93 |
+
min_bin_height=min_bin_height,
|
94 |
+
min_derivative=min_derivative,
|
95 |
+
)
|
96 |
+
|
97 |
+
return outputs, logabsdet
|
98 |
+
|
99 |
+
|
100 |
+
def rational_quadratic_spline(
|
101 |
+
inputs,
|
102 |
+
unnormalized_widths,
|
103 |
+
unnormalized_heights,
|
104 |
+
unnormalized_derivatives,
|
105 |
+
inverse=False,
|
106 |
+
left=0.0,
|
107 |
+
right=1.0,
|
108 |
+
bottom=0.0,
|
109 |
+
top=1.0,
|
110 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
111 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
112 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
113 |
+
):
|
114 |
+
if torch.min(inputs) < left or torch.max(inputs) > right:
|
115 |
+
raise ValueError("Input to a transform is not within its domain")
|
116 |
+
|
117 |
+
num_bins = unnormalized_widths.shape[-1]
|
118 |
+
|
119 |
+
if min_bin_width * num_bins > 1.0:
|
120 |
+
raise ValueError("Minimal bin width too large for the number of bins")
|
121 |
+
if min_bin_height * num_bins > 1.0:
|
122 |
+
raise ValueError("Minimal bin height too large for the number of bins")
|
123 |
+
|
124 |
+
widths = F.softmax(unnormalized_widths, dim=-1)
|
125 |
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
126 |
+
cumwidths = torch.cumsum(widths, dim=-1)
|
127 |
+
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
|
128 |
+
cumwidths = (right - left) * cumwidths + left
|
129 |
+
cumwidths[..., 0] = left
|
130 |
+
cumwidths[..., -1] = right
|
131 |
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
132 |
+
|
133 |
+
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
134 |
+
|
135 |
+
heights = F.softmax(unnormalized_heights, dim=-1)
|
136 |
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
137 |
+
cumheights = torch.cumsum(heights, dim=-1)
|
138 |
+
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
|
139 |
+
cumheights = (top - bottom) * cumheights + bottom
|
140 |
+
cumheights[..., 0] = bottom
|
141 |
+
cumheights[..., -1] = top
|
142 |
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
143 |
+
|
144 |
+
if inverse:
|
145 |
+
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
146 |
+
else:
|
147 |
+
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
148 |
+
|
149 |
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
150 |
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
151 |
+
|
152 |
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
153 |
+
delta = heights / widths
|
154 |
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
155 |
+
|
156 |
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
157 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
158 |
+
|
159 |
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
160 |
+
|
161 |
+
if inverse:
|
162 |
+
a = (inputs - input_cumheights) * (
|
163 |
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
164 |
+
) + input_heights * (input_delta - input_derivatives)
|
165 |
+
b = input_heights * input_derivatives - (inputs - input_cumheights) * (
|
166 |
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
167 |
+
)
|
168 |
+
c = -input_delta * (inputs - input_cumheights)
|
169 |
+
|
170 |
+
discriminant = b.pow(2) - 4 * a * c
|
171 |
+
assert (discriminant >= 0).all()
|
172 |
+
|
173 |
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
174 |
+
outputs = root * input_bin_widths + input_cumwidths
|
175 |
+
|
176 |
+
theta_one_minus_theta = root * (1 - root)
|
177 |
+
denominator = input_delta + (
|
178 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
179 |
+
* theta_one_minus_theta
|
180 |
+
)
|
181 |
+
derivative_numerator = input_delta.pow(2) * (
|
182 |
+
input_derivatives_plus_one * root.pow(2)
|
183 |
+
+ 2 * input_delta * theta_one_minus_theta
|
184 |
+
+ input_derivatives * (1 - root).pow(2)
|
185 |
+
)
|
186 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
187 |
+
|
188 |
+
return outputs, -logabsdet
|
189 |
+
else:
|
190 |
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
191 |
+
theta_one_minus_theta = theta * (1 - theta)
|
192 |
+
|
193 |
+
numerator = input_heights * (
|
194 |
+
input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
|
195 |
+
)
|
196 |
+
denominator = input_delta + (
|
197 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
198 |
+
* theta_one_minus_theta
|
199 |
+
)
|
200 |
+
outputs = input_cumheights + numerator / denominator
|
201 |
+
|
202 |
+
derivative_numerator = input_delta.pow(2) * (
|
203 |
+
input_derivatives_plus_one * theta.pow(2)
|
204 |
+
+ 2 * input_delta * theta_one_minus_theta
|
205 |
+
+ input_derivatives * (1 - theta).pow(2)
|
206 |
+
)
|
207 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
208 |
+
|
209 |
+
return outputs, logabsdet
|
my_utils.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ffmpeg
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
def load_audio(file, sr):
|
6 |
+
try:
|
7 |
+
# https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
|
8 |
+
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
|
9 |
+
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
|
10 |
+
file = (
|
11 |
+
file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
12 |
+
) # 防止小白拷路径头尾带了空格和"和回车
|
13 |
+
out, _ = (
|
14 |
+
ffmpeg.input(file, threads=0)
|
15 |
+
.output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
|
16 |
+
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
|
17 |
+
)
|
18 |
+
except Exception as e:
|
19 |
+
raise RuntimeError(f"Failed to load audio: {e}")
|
20 |
+
|
21 |
+
return np.frombuffer(out, np.float32).flatten()
|