Spaces:
Sleeping
Sleeping
from multiprocess.pool import ThreadPool | |
from speaker_encoder.params_data import * | |
from speaker_encoder.config import librispeech_datasets, anglophone_nationalites | |
from datetime import datetime | |
from speaker_encoder import audio | |
from pathlib import Path | |
from tqdm import tqdm | |
import numpy as np | |
class DatasetLog: | |
""" | |
Registers metadata about the dataset in a text file. | |
""" | |
def __init__(self, root, name): | |
self.text_file = open(Path(root, "Log_%s.txt" % name.replace("/", "_")), "w") | |
self.sample_data = dict() | |
start_time = str(datetime.now().strftime("%A %d %B %Y at %H:%M")) | |
self.write_line("Creating dataset %s on %s" % (name, start_time)) | |
self.write_line("-----") | |
self._log_params() | |
def _log_params(self): | |
from speaker_encoder import params_data | |
self.write_line("Parameter values:") | |
for param_name in (p for p in dir(params_data) if not p.startswith("__")): | |
value = getattr(params_data, param_name) | |
self.write_line("\t%s: %s" % (param_name, value)) | |
self.write_line("-----") | |
def write_line(self, line): | |
self.text_file.write("%s\n" % line) | |
def add_sample(self, **kwargs): | |
for param_name, value in kwargs.items(): | |
if not param_name in self.sample_data: | |
self.sample_data[param_name] = [] | |
self.sample_data[param_name].append(value) | |
def finalize(self): | |
self.write_line("Statistics:") | |
for param_name, values in self.sample_data.items(): | |
self.write_line("\t%s:" % param_name) | |
self.write_line("\t\tmin %.3f, max %.3f" % (np.min(values), np.max(values))) | |
self.write_line("\t\tmean %.3f, median %.3f" % (np.mean(values), np.median(values))) | |
self.write_line("-----") | |
end_time = str(datetime.now().strftime("%A %d %B %Y at %H:%M")) | |
self.write_line("Finished on %s" % end_time) | |
self.text_file.close() | |
def _init_preprocess_dataset(dataset_name, datasets_root, out_dir) -> (Path, DatasetLog): | |
dataset_root = datasets_root.joinpath(dataset_name) | |
if not dataset_root.exists(): | |
print("Couldn\'t find %s, skipping this dataset." % dataset_root) | |
return None, None | |
return dataset_root, DatasetLog(out_dir, dataset_name) | |
def _preprocess_speaker_dirs(speaker_dirs, dataset_name, datasets_root, out_dir, extension, | |
skip_existing, logger): | |
print("%s: Preprocessing data for %d speakers." % (dataset_name, len(speaker_dirs))) | |
# Function to preprocess utterances for one speaker | |
def preprocess_speaker(speaker_dir: Path): | |
# Give a name to the speaker that includes its dataset | |
speaker_name = "_".join(speaker_dir.relative_to(datasets_root).parts) | |
# Create an output directory with that name, as well as a txt file containing a | |
# reference to each source file. | |
speaker_out_dir = out_dir.joinpath(speaker_name) | |
speaker_out_dir.mkdir(exist_ok=True) | |
sources_fpath = speaker_out_dir.joinpath("_sources.txt") | |
# There's a possibility that the preprocessing was interrupted earlier, check if | |
# there already is a sources file. | |
if sources_fpath.exists(): | |
try: | |
with sources_fpath.open("r") as sources_file: | |
existing_fnames = {line.split(",")[0] for line in sources_file} | |
except: | |
existing_fnames = {} | |
else: | |
existing_fnames = {} | |
# Gather all audio files for that speaker recursively | |
sources_file = sources_fpath.open("a" if skip_existing else "w") | |
for in_fpath in speaker_dir.glob("**/*.%s" % extension): | |
# Check if the target output file already exists | |
out_fname = "_".join(in_fpath.relative_to(speaker_dir).parts) | |
out_fname = out_fname.replace(".%s" % extension, ".npy") | |
if skip_existing and out_fname in existing_fnames: | |
continue | |
# Load and preprocess the waveform | |
wav = audio.preprocess_wav(in_fpath) | |
if len(wav) == 0: | |
continue | |
# Create the mel spectrogram, discard those that are too short | |
frames = audio.wav_to_mel_spectrogram(wav) | |
if len(frames) < partials_n_frames: | |
continue | |
out_fpath = speaker_out_dir.joinpath(out_fname) | |
np.save(out_fpath, frames) | |
logger.add_sample(duration=len(wav) / sampling_rate) | |
sources_file.write("%s,%s\n" % (out_fname, in_fpath)) | |
sources_file.close() | |
# Process the utterances for each speaker | |
with ThreadPool(8) as pool: | |
list(tqdm(pool.imap(preprocess_speaker, speaker_dirs), dataset_name, len(speaker_dirs), | |
unit="speakers")) | |
logger.finalize() | |
print("Done preprocessing %s.\n" % dataset_name) | |
# Function to preprocess utterances for one speaker | |
def __preprocess_speaker(speaker_dir: Path, datasets_root: Path, out_dir: Path, extension: str, skip_existing: bool): | |
# Give a name to the speaker that includes its dataset | |
speaker_name = "_".join(speaker_dir.relative_to(datasets_root).parts) | |
# Create an output directory with that name, as well as a txt file containing a | |
# reference to each source file. | |
speaker_out_dir = out_dir.joinpath(speaker_name) | |
speaker_out_dir.mkdir(exist_ok=True) | |
sources_fpath = speaker_out_dir.joinpath("_sources.txt") | |
# There's a possibility that the preprocessing was interrupted earlier, check if | |
# there already is a sources file. | |
# if sources_fpath.exists(): | |
# try: | |
# with sources_fpath.open("r") as sources_file: | |
# existing_fnames = {line.split(",")[0] for line in sources_file} | |
# except: | |
# existing_fnames = {} | |
# else: | |
# existing_fnames = {} | |
existing_fnames = {} | |
# Gather all audio files for that speaker recursively | |
sources_file = sources_fpath.open("a" if skip_existing else "w") | |
for in_fpath in speaker_dir.glob("**/*.%s" % extension): | |
# Check if the target output file already exists | |
out_fname = "_".join(in_fpath.relative_to(speaker_dir).parts) | |
out_fname = out_fname.replace(".%s" % extension, ".npy") | |
if skip_existing and out_fname in existing_fnames: | |
continue | |
# Load and preprocess the waveform | |
wav = audio.preprocess_wav(in_fpath) | |
if len(wav) == 0: | |
continue | |
# Create the mel spectrogram, discard those that are too short | |
frames = audio.wav_to_mel_spectrogram(wav) | |
if len(frames) < partials_n_frames: | |
continue | |
out_fpath = speaker_out_dir.joinpath(out_fname) | |
np.save(out_fpath, frames) | |
# logger.add_sample(duration=len(wav) / sampling_rate) | |
sources_file.write("%s,%s\n" % (out_fname, in_fpath)) | |
sources_file.close() | |
return len(wav) | |
def _preprocess_speaker_dirs_vox2(speaker_dirs, dataset_name, datasets_root, out_dir, extension, | |
skip_existing, logger): | |
# from multiprocessing import Pool, cpu_count | |
from pathos.multiprocessing import ProcessingPool as Pool | |
# Function to preprocess utterances for one speaker | |
def __preprocess_speaker(speaker_dir: Path): | |
# Give a name to the speaker that includes its dataset | |
speaker_name = "_".join(speaker_dir.relative_to(datasets_root).parts) | |
# Create an output directory with that name, as well as a txt file containing a | |
# reference to each source file. | |
speaker_out_dir = out_dir.joinpath(speaker_name) | |
speaker_out_dir.mkdir(exist_ok=True) | |
sources_fpath = speaker_out_dir.joinpath("_sources.txt") | |
existing_fnames = {} | |
# Gather all audio files for that speaker recursively | |
sources_file = sources_fpath.open("a" if skip_existing else "w") | |
wav_lens = [] | |
for in_fpath in speaker_dir.glob("**/*.%s" % extension): | |
# Check if the target output file already exists | |
out_fname = "_".join(in_fpath.relative_to(speaker_dir).parts) | |
out_fname = out_fname.replace(".%s" % extension, ".npy") | |
if skip_existing and out_fname in existing_fnames: | |
continue | |
# Load and preprocess the waveform | |
wav = audio.preprocess_wav(in_fpath) | |
if len(wav) == 0: | |
continue | |
# Create the mel spectrogram, discard those that are too short | |
frames = audio.wav_to_mel_spectrogram(wav) | |
if len(frames) < partials_n_frames: | |
continue | |
out_fpath = speaker_out_dir.joinpath(out_fname) | |
np.save(out_fpath, frames) | |
# logger.add_sample(duration=len(wav) / sampling_rate) | |
sources_file.write("%s,%s\n" % (out_fname, in_fpath)) | |
wav_lens.append(len(wav)) | |
sources_file.close() | |
return wav_lens | |
print("%s: Preprocessing data for %d speakers." % (dataset_name, len(speaker_dirs))) | |
# Process the utterances for each speaker | |
# with ThreadPool(8) as pool: | |
# list(tqdm(pool.imap(preprocess_speaker, speaker_dirs), dataset_name, len(speaker_dirs), | |
# unit="speakers")) | |
pool = Pool(processes=20) | |
for i, wav_lens in enumerate(pool.map(__preprocess_speaker, speaker_dirs), 1): | |
for wav_len in wav_lens: | |
logger.add_sample(duration=wav_len / sampling_rate) | |
print(f'{i}/{len(speaker_dirs)} \r') | |
logger.finalize() | |
print("Done preprocessing %s.\n" % dataset_name) | |
def preprocess_librispeech(datasets_root: Path, out_dir: Path, skip_existing=False): | |
for dataset_name in librispeech_datasets["train"]["other"]: | |
# Initialize the preprocessing | |
dataset_root, logger = _init_preprocess_dataset(dataset_name, datasets_root, out_dir) | |
if not dataset_root: | |
return | |
# Preprocess all speakers | |
speaker_dirs = list(dataset_root.glob("*")) | |
_preprocess_speaker_dirs(speaker_dirs, dataset_name, datasets_root, out_dir, "flac", | |
skip_existing, logger) | |
def preprocess_voxceleb1(datasets_root: Path, out_dir: Path, skip_existing=False): | |
# Initialize the preprocessing | |
dataset_name = "VoxCeleb1" | |
dataset_root, logger = _init_preprocess_dataset(dataset_name, datasets_root, out_dir) | |
if not dataset_root: | |
return | |
# Get the contents of the meta file | |
with dataset_root.joinpath("vox1_meta.csv").open("r") as metafile: | |
metadata = [line.split("\t") for line in metafile][1:] | |
# Select the ID and the nationality, filter out non-anglophone speakers | |
nationalities = {line[0]: line[3] for line in metadata} | |
# keep_speaker_ids = [speaker_id for speaker_id, nationality in nationalities.items() if | |
# nationality.lower() in anglophone_nationalites] | |
keep_speaker_ids = [speaker_id for speaker_id, nationality in nationalities.items()] | |
print("VoxCeleb1: using samples from %d (presumed anglophone) speakers out of %d." % | |
(len(keep_speaker_ids), len(nationalities))) | |
# Get the speaker directories for anglophone speakers only | |
speaker_dirs = dataset_root.joinpath("wav").glob("*") | |
speaker_dirs = [speaker_dir for speaker_dir in speaker_dirs if | |
speaker_dir.name in keep_speaker_ids] | |
print("VoxCeleb1: found %d anglophone speakers on the disk, %d missing (this is normal)." % | |
(len(speaker_dirs), len(keep_speaker_ids) - len(speaker_dirs))) | |
# Preprocess all speakers | |
_preprocess_speaker_dirs(speaker_dirs, dataset_name, datasets_root, out_dir, "wav", | |
skip_existing, logger) | |
def preprocess_voxceleb2(datasets_root: Path, out_dir: Path, skip_existing=False): | |
# Initialize the preprocessing | |
dataset_name = "VoxCeleb2" | |
dataset_root, logger = _init_preprocess_dataset(dataset_name, datasets_root, out_dir) | |
if not dataset_root: | |
return | |
# Get the speaker directories | |
# Preprocess all speakers | |
speaker_dirs = list(dataset_root.joinpath("dev", "aac").glob("*")) | |
_preprocess_speaker_dirs_vox2(speaker_dirs, dataset_name, datasets_root, out_dir, "m4a", | |
skip_existing, logger) | |