OlaWod's picture
Update app.py
6722d8f
raw
history blame
4.56 kB
import os
import torch
import librosa
import gradio as gr
from scipy.io.wavfile import write
from transformers import WavLMModel
import utils
from models import SynthesizerTrn
from mel_processing import mel_spectrogram_torch
from speaker_encoder.voice_encoder import SpeakerEncoder
'''
def get_wavlm():
os.system('gdown https://drive.google.com/uc?id=12-cB34qCTvByWT-QtOcZaqwwO21FLSqU')
shutil.move('WavLM-Large.pt', 'wavlm')
'''
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Loading FreeVC...")
hps = utils.get_hparams_from_file("configs/freevc.json")
freevc = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model).to(device)
_ = freevc.eval()
_ = utils.load_checkpoint("checkpoints/freevc.pth", freevc, None)
smodel = SpeakerEncoder('speaker_encoder/ckpt/pretrained_bak_5805000.pt')
print("Loading FreeVC(24k)...")
hps = utils.get_hparams_from_file("configs/freevc-24.json")
freevc_24 = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model).to(device)
_ = freevc_24.eval()
_ = utils.load_checkpoint("checkpoints/freevc-24.pth", freevc_24, None)
print("Loading FreeVC-s...")
hps = utils.get_hparams_from_file("configs/freevc-s.json")
freevc_s = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model).to(device)
_ = freevc_s.eval()
_ = utils.load_checkpoint("checkpoints/freevc-s.pth", freevc_s, None)
print("Loading WavLM for content...")
cmodel = WavLMModel.from_pretrained("microsoft/wavlm-large").to(device)
def convert(model, src, tgt):
with torch.no_grad():
# tgt
wav_tgt, _ = librosa.load(tgt, sr=hps.data.sampling_rate)
wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20)
if model == "FreeVC" or model == "FreeVC (24kHz)":
g_tgt = smodel.embed_utterance(wav_tgt)
g_tgt = torch.from_numpy(g_tgt).unsqueeze(0).to(device)
else:
wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(device)
mel_tgt = mel_spectrogram_torch(
wav_tgt,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
# src
wav_src, _ = librosa.load(src, sr=hps.data.sampling_rate)
wav_src = torch.from_numpy(wav_src).unsqueeze(0).to(device)
c = cmodel(wav_src).last_hidden_state.transpose(1, 2).to(device)
# infer
if model == "FreeVC":
audio = freevc.infer(c, g=g_tgt)
elif model == "FreeVC-s":
audio = freevc_s.infer(c, mel=mel_tgt)
else:
audio = freevc_24.infer(c, g=g_tgt)
audio = audio[0][0].data.cpu().float().numpy()
if model == "FreeVC" or model == "FreeVC-s":
write("out.wav", hps.data.sampling_rate, audio)
else:
write("out.wav", 24000, audio)
out = "out.wav"
return out
model = gr.Dropdown(choices=["FreeVC", "FreeVC-s", "FreeVC (24kHz)"], value="FreeVC",type="value", label="Model")
audio1 = gr.inputs.Audio(label="Source Audio", type='filepath')
audio2 = gr.inputs.Audio(label="Reference Audio", type='filepath')
inputs = [model, audio1, audio2]
outputs = gr.outputs.Audio(label="Output Audio", type='filepath')
title = "FreeVC"
description = "Gradio Demo for FreeVC: Towards High-Quality Text-Free One-Shot Voice Conversion. To use it, simply upload your audio, or click the example to load. Read more at the links below. Note: It seems that the WavLM checkpoint in HuggingFace is a little different from the one used to train FreeVC, which may degrade the performance a bit. In addition, speaker similarity can be largely affected if there are too much silence in the reference audio, so please <strong>trim</strong> it before submitting."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2210.15418' target='_blank'>Paper</a> | <a href='https://github.com/OlaWod/FreeVC' target='_blank'>Github Repo</a></p>"
examples=[["FreeVC", 'p225_001.wav', 'p226_002.wav'], ["FreeVC-s", 'p226_002.wav', 'p225_001.wav'], ["FreeVC (24kHz)", 'p225_001.wav', 'p226_002.wav']]
gr.Interface(convert, inputs, outputs, title=title, description=description, article=article, examples=examples, enable_queue=True).launch()