reichenbach's picture
Update app.py
da12076
raw
history blame
5.15 kB
import os
os.system('pip install tensorflow')
os.system('pip install tensorflow_hub')
os.system('pip install tensorflow_text')
from huggingface_hub import from_pretrained_keras
import numpy as np
import pandas as pd
import tensorflow as tf
import tensorflow_hub as hub
import tensorflow_text as text
from tensorflow import keras
import gradio as gr
def make_bert_preprocessing_model(sentence_features, seq_length=128):
"""Returns Model mapping string features to BERT inputs.
Args:
sentence_features: A list with the names of string-valued features.
seq_length: An integer that defines the sequence length of BERT inputs.
Returns:
A Keras Model that can be called on a list or dict of string Tensors
(with the order or names, resp., given by sentence_features) and
returns a dict of tensors for input to BERT.
"""
input_segments = [
tf.keras.layers.Input(shape=(), dtype=tf.string, name=ft)
for ft in sentence_features
]
# tokenize the text to word pieces
bert_preprocess = hub.load(bert_preprocess_path)
tokenizer = hub.KerasLayer(bert_preprocess.tokenize,
name="tokenizer")
segments = [tokenizer(s) for s in input_segments]
truncated_segments = segments
packer = hub.KerasLayer(bert_preprocess.bert_pack_inputs,
arguments=dict(seq_length=seq_length),
name="packer")
model_inputs = packer(truncated_segments)
return keras.Model(input_segments, model_inputs)
def preprocess_image(image_path, resize):
extension = tf.strings.split(image_path)[-1]
image = tf.io.read_file(image_path)
if extension == b"jpg":
image = tf.image.decode_jpeg(image, 3)
else:
image = tf.image.decode_png(image, 3)
image = tf.image.resize(image, resize)
return image
def preprocess_text(text_1, text_2):
text_1 = tf.convert_to_tensor([text_1])
text_2 = tf.convert_to_tensor([text_2])
output = bert_preprocess_model([text_1, text_2])
output = {feature: tf.squeeze(output[feature]) for feature in bert_input_features}
return output
def preprocess_text_and_image(sample, resize):
image_1 = preprocess_image(sample['image_1_path'], resize)
image_2 = preprocess_image(sample['image_2_path'], resize)
text = preprocess_text(sample['text_1'], sample['text_2'])
return {"image_1": image_1, "image_2": image_2, "text": text}
def classify_info(image_1, text_1, image_2, text_2):
sample = dict()
sample['image_1_path'] = image_1
sample['image_2_path'] = image_2
sample['text_1'] = text_1
sample['text_2'] = text_2
dataframe = pd.DataFrame(sample, index=[0])
ds = tf.data.Dataset.from_tensor_slices((dict(dataframe), [0]))
ds = ds.map(lambda x, y: (preprocess_text_and_image(x, resize), y)).cache()
batch_size = 1
auto = tf.data.AUTOTUNE
ds = ds.batch(batch_size).prefetch(auto)
output = model.predict(ds)
outputs = {(labels[i], output[i]) for i in range(len(output))}
#label = np.argmax(output)
return outputs #labels[label]
model = from_pretrained_keras("keras-io/multimodal-entailment")
resize = (128, 128)
bert_input_features = ["input_word_ids", "input_type_ids", "input_mask"]
bert_model_path = ("https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-256_A-4/1")
bert_preprocess_path = "https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3"
bert_preprocess_model = make_bert_preprocessing_model(['text_1', 'text_2'])
labels = {0: "Contradictory", 1: "Implies", 2: "No Entailment"}
resize = (128, 128)
image_1 = gr.inputs.Image(type="filepath")
image_2 = gr.inputs.Image(type="filepath")
text_1 = gr.inputs.Textbox(lines=5)
text_2 = gr.inputs.Textbox(lines=5)
examples = [['examples/image_1.png', '#IndiaFightsCorona:\n\nNearly 4.5 million beneficiaries vaccinated against #COVID19 in 19 days.\n\nIndia is the fastest country to cross landmark of vaccinating 4 million beneficiaries in merely 18 days.\n\n#StaySafe #IndiaWillWin #Unite2FightCorona https://t.co/beGDQfd06S', 'examples/image_2.jpg', '#IndiaFightsCorona:\n\nIndia has become the fastest nation to reach 4 million #COVID19 vaccinations ; it took only 18 days to administer the first 4 million #vaccines\n\n:@MoHFW_INDIA Secretary\n\n#StaySafe #IndiaWillWin #Unite2FightCorona https://t.co/9GENQlqtn3']]
label = gr.outputs.Label()
iface = gr.Interface(classify_info,
inputs=[image_1, text_1, image_2, text_2], outputs=label,
examples = examples,
title="Multimodal Entailment Keras",
description = "Model for classifying whether image and text from one scenario complements the image and text from another scenario. They can be contradictory, implied or no entailment. Example images and text from the dataset in raw form !",
article = "Author: <a href=\"https://huggingface.co/reichenbach\">Rishav Chandra Varma</a>")
iface.launch()