cl_s2s / app.py
reichenbach's picture
removing printing statements
40d8dc5
import os
os.system('pip install tensorflow')
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import json
import numpy as np
import gradio as gr
import tensorflow as tf
from tensorflow import keras
from huggingface_hub.keras_mixin import from_pretrained_keras
num_samples = 10000
data_path = 'fra.txt'
input_texts = []
target_texts = []
input_characters = set()
target_characters = set()
with open(data_path, "r", encoding="utf-8") as f:
lines = f.read().split("\n")
for line in lines[: min(num_samples, len(lines) - 1)]:
input_text, target_text, _ = line.split("\t")
# We use "tab" as the "start sequence" character
# for the targets, and "\n" as "end sequence" character.
target_text = "\t" + target_text + "\n"
input_texts.append(input_text)
target_texts.append(target_text)
for char in input_text:
if char not in input_characters:
input_characters.add(char)
for char in target_text:
if char not in target_characters:
target_characters.add(char)
input_characters = sorted(list(input_characters))
target_characters = sorted(list(target_characters))
input_token_index = dict([(char, i) for i, char in enumerate(input_characters)])
target_token_index = dict([(char, i) for i, char in enumerate(target_characters)])
num_encoder_tokens = len(input_characters)
num_decoder_tokens = len(target_characters)
max_encoder_seq_length = max([len(txt) for txt in input_texts])
max_decoder_seq_length = max([len(txt) for txt in target_texts])
model = from_pretrained_keras("keras-io/cl_s2s")
print(model.summary())
latent_dim = 256
encoder_inputs = model.input[0] # input_1
encoder_outputs, state_h_enc, state_c_enc = model.layers[2].output # lstm_1
encoder_states = [state_h_enc, state_c_enc]
encoder_model = keras.Model(encoder_inputs, encoder_states)
decoder_inputs = tf.identity(model.input[1]) # input_2
decoder_state_input_h = keras.Input(shape=(latent_dim,))
decoder_state_input_c = keras.Input(shape=(latent_dim,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_lstm = model.layers[3]
decoder_outputs, state_h_dec, state_c_dec = decoder_lstm(
decoder_inputs, initial_state=decoder_states_inputs
)
decoder_states = [state_h_dec, state_c_dec]
decoder_dense = model.layers[4]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = keras.Model(
[decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states
)
# Reverse-lookup token index to decode sequences back to
# something readable.
reverse_input_char_index = dict((i, char) for char, i in input_token_index.items())
reverse_target_char_index = dict((i, char) for char, i in target_token_index.items())
def decode_sequence(input_seq):
# Encode the input as state vectors.
input_seq2 = list()
input_seq2.append(input_seq)
infer_input_data = np.zeros((len(input_seq2), max_encoder_seq_length, num_encoder_tokens), dtype="float32")
for i, (input_text) in enumerate((input_seq2)):
for t, char in enumerate(input_text):
infer_input_data[i, t, input_token_index[char]] = 1.0
infer_input_data[i, t + 1:, input_token_index[" "]] = 1.0
states_value = encoder_model.predict(infer_input_data)
# Generate empty target sequence of length 1.
target_seq = np.zeros((1, 1, num_decoder_tokens))
# Populate the first character of target sequence with the start character.
target_seq[0, 0, target_token_index["\t"]] = 1.0
# Sampling loop for a batch of sequences
# (to simplify, here we assume a batch of size 1).
stop_condition = False
decoded_sentence = ""
while not stop_condition:
output_tokens, h, c = decoder_model.predict([target_seq] + states_value)
# Sample a token
sampled_token_index = np.argmax(output_tokens[0, -1, :])
sampled_char = reverse_target_char_index[sampled_token_index]
decoded_sentence += sampled_char
# Exit condition: either hit max length
# or find stop character.
if sampled_char == "\n" or len(decoded_sentence) > max_decoder_seq_length:
stop_condition = True
# Update the target sequence (of length 1).
target_seq = np.zeros((1, 1, num_decoder_tokens))
target_seq[0, 0, sampled_token_index] = 1.0
# Update states
states_value = [h, c]
return decoded_sentence
input_1 = gr.Textbox(lines=2)
output_1 = gr.Textbox()
iface = gr.Interface(decode_sequence,
inputs=input_1, outputs=output_1,
examples=[["Be kind."],
["Hug me."]],
title="Character Level Recurrent Seq2Seq Model",
article="Author: <a href=\"https://huggingface.co/reichenbach\">Rishav Chandra Varma</a>")
iface.launch(debug=True)