kepler296e's picture
update markdown
29593cd
from fastapi import FastAPI
import gradio as gr
import torch
from sd import pipeline
from sd import model_loader
from transformers import AutoTokenizer
from diffusers import StableDiffusionPipeline
app = FastAPI()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer")
weights_url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt"
models = model_loader.from_pretrained(weights_url, device)
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True)
pipe = pipe.to(device)
MIN_IMAGE_SIZE = 256
MAX_IMAGE_SIZE = 1024
MAX_SEED = 2147483647 # 2^31 - 1
def generate_image(prompt, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, model, width, height):
if randomize_seed:
seed = torch.randint(0, MAX_SEED, (1,)).item()
generator = torch.Generator(device=device).manual_seed(seed)
if model == "from-scratch":
image = pipeline.generate(
prompt=prompt,
uncond_prompt=negative_prompt,
input_image=None,
strength=0.9,
cfg_scale=guidance_scale,
n_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
device=device,
idle_device="cpu",
models=models,
tokenizer=tokenizer,
)
else:
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
md = """
# Text-to-Image: Stable Diffusion from Scratch
### By [Nazareno Amidolare](https://kepler296e.github.io/)
Using **Docker**, **FastAPI**, **PyTorch** and **Gradio**.
### References
- [Coding Stable Diffusion from scratch in PyTorch](https://www.youtube.com/watch?v=ZBKpAp_6TGI&ab_channel=UmarJamil)
- [Hugging Space Diffusers](https://github.com/huggingface/diffusers/)
Currently running on a **CPU** (≈20 minutes per image).
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(md)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
model = gr.Dropdown(
label="Model",
choices=["from-scratch", "runwayml/stable-diffusion-v1-5"],
value="from-scratch",
interactive=True,
)
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
value="",
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1.0,
maximum=14.0,
step=0.1,
value=8.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=50,
)
run_button.click(
fn = generate_image,
inputs = [prompt, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, model, width, height],
outputs = [result]
)
app = gr.mount_gradio_app(app, demo, "/")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)