|
from fastapi import FastAPI |
|
import gradio as gr |
|
import torch |
|
from sd import pipeline |
|
from sd import model_loader |
|
from transformers import AutoTokenizer |
|
from diffusers import StableDiffusionPipeline |
|
|
|
app = FastAPI() |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer") |
|
weights_url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt" |
|
models = model_loader.from_pretrained(weights_url, device) |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True) |
|
pipe = pipe.to(device) |
|
|
|
MIN_IMAGE_SIZE = 256 |
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
MAX_SEED = 2147483647 |
|
|
|
def generate_image(prompt, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, model, width, height): |
|
|
|
if randomize_seed: |
|
seed = torch.randint(0, MAX_SEED, (1,)).item() |
|
|
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
if model == "from-scratch": |
|
image = pipeline.generate( |
|
prompt=prompt, |
|
uncond_prompt=negative_prompt, |
|
input_image=None, |
|
strength=0.9, |
|
cfg_scale=guidance_scale, |
|
n_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
device=device, |
|
idle_device="cpu", |
|
models=models, |
|
tokenizer=tokenizer, |
|
) |
|
else: |
|
image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
).images[0] |
|
|
|
return image |
|
|
|
css=""" |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
""" |
|
|
|
md = """ |
|
# Text-to-Image: Stable Diffusion from Scratch |
|
### By [Nazareno Amidolare](https://kepler296e.github.io/) |
|
Using **Docker**, **FastAPI**, **PyTorch** and **Gradio**. |
|
### References |
|
- [Coding Stable Diffusion from scratch in PyTorch](https://www.youtube.com/watch?v=ZBKpAp_6TGI&ab_channel=UmarJamil) |
|
- [Hugging Space Diffusers](https://github.com/huggingface/diffusers/) |
|
|
|
Currently running on a **CPU** (≈20 minutes per image). |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(md) |
|
|
|
with gr.Row(): |
|
|
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
|
|
run_button = gr.Button("Run", scale=0) |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
|
with gr.Row(): |
|
|
|
model = gr.Dropdown( |
|
label="Model", |
|
choices=["from-scratch", "runwayml/stable-diffusion-v1-5"], |
|
value="from-scratch", |
|
interactive=True, |
|
) |
|
|
|
with gr.Row(): |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=42, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
|
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
visible=False, |
|
value="", |
|
) |
|
|
|
with gr.Row(): |
|
|
|
width = gr.Slider( |
|
label="Width", |
|
minimum=MIN_IMAGE_SIZE, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=512, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Height", |
|
minimum=MIN_IMAGE_SIZE, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=512, |
|
) |
|
|
|
with gr.Row(): |
|
|
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=1.0, |
|
maximum=14.0, |
|
step=0.1, |
|
value=8.0, |
|
) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=50, |
|
) |
|
|
|
run_button.click( |
|
fn = generate_image, |
|
inputs = [prompt, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, model, width, height], |
|
outputs = [result] |
|
) |
|
|
|
app = gr.mount_gradio_app(app, demo, "/") |
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=8000) |