|
""" |
|
按中英混合识别 |
|
按日英混合识别 |
|
多语种启动切分识别语种 |
|
全部按中文识别 |
|
全部按英文识别 |
|
全部按日文识别 |
|
""" |
|
|
|
import json |
|
import logging |
|
import os |
|
import random |
|
import re |
|
import sys |
|
|
|
import torch |
|
|
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
sys.path.append("%s/GPT_SoVITS" % (now_dir)) |
|
|
|
logging.getLogger("markdown_it").setLevel(logging.ERROR) |
|
logging.getLogger("urllib3").setLevel(logging.ERROR) |
|
logging.getLogger("httpcore").setLevel(logging.ERROR) |
|
logging.getLogger("httpx").setLevel(logging.ERROR) |
|
logging.getLogger("asyncio").setLevel(logging.ERROR) |
|
logging.getLogger("charset_normalizer").setLevel(logging.ERROR) |
|
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR) |
|
|
|
|
|
infer_ttswebui = os.environ.get("infer_ttswebui", 9872) |
|
infer_ttswebui = int(infer_ttswebui) |
|
is_share = os.environ.get("is_share", "False") |
|
is_share = eval(is_share) |
|
if "_CUDA_VISIBLE_DEVICES" in os.environ: |
|
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] |
|
|
|
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available() |
|
gpt_path = os.environ.get("gpt_path", None) |
|
sovits_path = os.environ.get("sovits_path", None) |
|
cnhubert_base_path = os.environ.get("cnhubert_base_path", None) |
|
bert_path = os.environ.get("bert_path", None) |
|
version = model_version = os.environ.get("version", "v2") |
|
|
|
import gradio as gr |
|
from TTS_infer_pack.text_segmentation_method import get_method |
|
from TTS_infer_pack.TTS import NO_PROMPT_ERROR, TTS, TTS_Config |
|
|
|
from tools.assets import css, js, top_html |
|
from tools.i18n.i18n import I18nAuto, scan_language_list |
|
|
|
language = os.environ.get("language", "Auto") |
|
language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else language |
|
i18n = I18nAuto(language=language) |
|
|
|
|
|
|
|
|
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
|
|
|
|
else: |
|
device = "cpu" |
|
|
|
|
|
|
|
|
|
dict_language_v1 = { |
|
i18n("中文"): "all_zh", |
|
i18n("英文"): "en", |
|
i18n("日文"): "all_ja", |
|
i18n("中英混合"): "zh", |
|
i18n("日英混合"): "ja", |
|
i18n("多语种混合"): "auto", |
|
} |
|
dict_language_v2 = { |
|
i18n("中文"): "all_zh", |
|
i18n("英文"): "en", |
|
i18n("日文"): "all_ja", |
|
i18n("粤语"): "all_yue", |
|
i18n("韩文"): "all_ko", |
|
i18n("中英混合"): "zh", |
|
i18n("日英混合"): "ja", |
|
i18n("粤英混合"): "yue", |
|
i18n("韩英混合"): "ko", |
|
i18n("多语种混合"): "auto", |
|
i18n("多语种混合(粤语)"): "auto_yue", |
|
} |
|
dict_language = dict_language_v1 if version == "v1" else dict_language_v2 |
|
|
|
cut_method = { |
|
i18n("不切"): "cut0", |
|
i18n("凑四句一切"): "cut1", |
|
i18n("凑50字一切"): "cut2", |
|
i18n("按中文句号。切"): "cut3", |
|
i18n("按英文句号.切"): "cut4", |
|
i18n("按标点符号切"): "cut5", |
|
} |
|
|
|
from config import change_choices, get_weights_names, name2gpt_path, name2sovits_path |
|
|
|
SoVITS_names, GPT_names = get_weights_names() |
|
from config import pretrained_sovits_name |
|
|
|
path_sovits_v3 = pretrained_sovits_name["v3"] |
|
path_sovits_v4 = pretrained_sovits_name["v4"] |
|
is_exist_s2gv3 = os.path.exists(path_sovits_v3) |
|
is_exist_s2gv4 = os.path.exists(path_sovits_v4) |
|
|
|
tts_config = TTS_Config("configs/tts_infer.yaml") |
|
tts_config.device = device |
|
tts_config.is_half = is_half |
|
tts_config.version = version |
|
if gpt_path is not None: |
|
if "!" in gpt_path or "!" in gpt_path: |
|
gpt_path = name2gpt_path[gpt_path] |
|
tts_config.t2s_weights_path = gpt_path |
|
if sovits_path is not None: |
|
if "!" in sovits_path or "!" in sovits_path: |
|
sovits_path = name2sovits_path[sovits_path] |
|
tts_config.vits_weights_path = sovits_path |
|
if cnhubert_base_path is not None: |
|
tts_config.cnhuhbert_base_path = cnhubert_base_path |
|
if bert_path is not None: |
|
tts_config.bert_base_path = bert_path |
|
|
|
print(tts_config) |
|
tts_pipeline = TTS(tts_config) |
|
gpt_path = tts_config.t2s_weights_path |
|
sovits_path = tts_config.vits_weights_path |
|
version = tts_config.version |
|
|
|
|
|
def inference( |
|
text, |
|
text_lang, |
|
ref_audio_path, |
|
aux_ref_audio_paths, |
|
prompt_text, |
|
prompt_lang, |
|
top_k, |
|
top_p, |
|
temperature, |
|
text_split_method, |
|
batch_size, |
|
speed_factor, |
|
ref_text_free, |
|
split_bucket, |
|
fragment_interval, |
|
seed, |
|
keep_random, |
|
parallel_infer, |
|
repetition_penalty, |
|
sample_steps, |
|
super_sampling, |
|
): |
|
seed = -1 if keep_random else seed |
|
actual_seed = seed if seed not in [-1, "", None] else random.randint(0, 2**32 - 1) |
|
inputs = { |
|
"text": text, |
|
"text_lang": dict_language[text_lang], |
|
"ref_audio_path": ref_audio_path, |
|
"aux_ref_audio_paths": [item.name for item in aux_ref_audio_paths] if aux_ref_audio_paths is not None else [], |
|
"prompt_text": prompt_text if not ref_text_free else "", |
|
"prompt_lang": dict_language[prompt_lang], |
|
"top_k": top_k, |
|
"top_p": top_p, |
|
"temperature": temperature, |
|
"text_split_method": cut_method[text_split_method], |
|
"batch_size": int(batch_size), |
|
"speed_factor": float(speed_factor), |
|
"split_bucket": split_bucket, |
|
"return_fragment": False, |
|
"fragment_interval": fragment_interval, |
|
"seed": actual_seed, |
|
"parallel_infer": parallel_infer, |
|
"repetition_penalty": repetition_penalty, |
|
"sample_steps": int(sample_steps), |
|
"super_sampling": super_sampling, |
|
} |
|
try: |
|
for item in tts_pipeline.run(inputs): |
|
yield item, actual_seed |
|
except NO_PROMPT_ERROR: |
|
gr.Warning(i18n("V3不支持无参考文本模式,请填写参考文本!")) |
|
|
|
|
|
def custom_sort_key(s): |
|
|
|
parts = re.split("(\d+)", s) |
|
|
|
parts = [int(part) if part.isdigit() else part for part in parts] |
|
return parts |
|
|
|
|
|
if os.path.exists("./weight.json"): |
|
pass |
|
else: |
|
with open("./weight.json", "w", encoding="utf-8") as file: |
|
json.dump({"GPT": {}, "SoVITS": {}}, file) |
|
|
|
with open("./weight.json", "r", encoding="utf-8") as file: |
|
weight_data = file.read() |
|
weight_data = json.loads(weight_data) |
|
gpt_path = os.environ.get("gpt_path", weight_data.get("GPT", {}).get(version, GPT_names[-1])) |
|
sovits_path = os.environ.get("sovits_path", weight_data.get("SoVITS", {}).get(version, SoVITS_names[0])) |
|
if isinstance(gpt_path, list): |
|
gpt_path = gpt_path[0] |
|
if isinstance(sovits_path, list): |
|
sovits_path = sovits_path[0] |
|
|
|
from process_ckpt import get_sovits_version_from_path_fast |
|
|
|
v3v4set = {"v3", "v4"} |
|
|
|
|
|
def change_sovits_weights(sovits_path, prompt_language=None, text_language=None): |
|
if "!" in sovits_path or "!" in sovits_path: |
|
sovits_path = name2sovits_path[sovits_path] |
|
global version, model_version, dict_language, if_lora_v3 |
|
version, model_version, if_lora_v3 = get_sovits_version_from_path_fast(sovits_path) |
|
|
|
is_exist = is_exist_s2gv3 if model_version == "v3" else is_exist_s2gv4 |
|
path_sovits = path_sovits_v3 if model_version == "v3" else path_sovits_v4 |
|
if if_lora_v3 == True and is_exist == False: |
|
info = path_sovits + "SoVITS %s" % model_version + i18n("底模缺失,无法加载相应 LoRA 权重") |
|
gr.Warning(info) |
|
raise FileExistsError(info) |
|
dict_language = dict_language_v1 if version == "v1" else dict_language_v2 |
|
if prompt_language is not None and text_language is not None: |
|
if prompt_language in list(dict_language.keys()): |
|
prompt_text_update, prompt_language_update = ( |
|
{"__type__": "update"}, |
|
{"__type__": "update", "value": prompt_language}, |
|
) |
|
else: |
|
prompt_text_update = {"__type__": "update", "value": ""} |
|
prompt_language_update = {"__type__": "update", "value": i18n("中文")} |
|
if text_language in list(dict_language.keys()): |
|
text_update, text_language_update = {"__type__": "update"}, {"__type__": "update", "value": text_language} |
|
else: |
|
text_update = {"__type__": "update", "value": ""} |
|
text_language_update = {"__type__": "update", "value": i18n("中文")} |
|
if model_version in v3v4set: |
|
visible_sample_steps = True |
|
visible_inp_refs = False |
|
else: |
|
visible_sample_steps = False |
|
visible_inp_refs = True |
|
yield ( |
|
{"__type__": "update", "choices": list(dict_language.keys())}, |
|
{"__type__": "update", "choices": list(dict_language.keys())}, |
|
prompt_text_update, |
|
prompt_language_update, |
|
text_update, |
|
text_language_update, |
|
{"__type__": "update", "interactive": visible_sample_steps, "value": 32}, |
|
{"__type__": "update", "visible": visible_inp_refs}, |
|
{"__type__": "update", "interactive": True if model_version not in v3v4set else False}, |
|
{"__type__": "update", "value": i18n("模型加载中,请等待"), "interactive": False}, |
|
) |
|
|
|
tts_pipeline.init_vits_weights(sovits_path) |
|
yield ( |
|
{"__type__": "update", "choices": list(dict_language.keys())}, |
|
{"__type__": "update", "choices": list(dict_language.keys())}, |
|
prompt_text_update, |
|
prompt_language_update, |
|
text_update, |
|
text_language_update, |
|
{"__type__": "update", "interactive": visible_sample_steps, "value": 32}, |
|
{"__type__": "update", "visible": visible_inp_refs}, |
|
{"__type__": "update", "interactive": True if model_version not in v3v4set else False}, |
|
{"__type__": "update", "value": i18n("合成语音"), "interactive": True}, |
|
) |
|
with open("./weight.json") as f: |
|
data = f.read() |
|
data = json.loads(data) |
|
data["SoVITS"][version] = sovits_path |
|
with open("./weight.json", "w") as f: |
|
f.write(json.dumps(data)) |
|
|
|
|
|
def change_gpt_weights(gpt_path): |
|
if "!" in gpt_path or "!" in gpt_path: |
|
gpt_path = name2gpt_path[gpt_path] |
|
tts_pipeline.init_t2s_weights(gpt_path) |
|
|
|
|
|
with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False, js=js, css=css) as app: |
|
gr.HTML( |
|
top_html.format( |
|
i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.") |
|
+ i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.") |
|
), |
|
elem_classes="markdown", |
|
) |
|
|
|
with gr.Column(): |
|
|
|
gr.Markdown(value=i18n("模型切换")) |
|
with gr.Row(): |
|
GPT_dropdown = gr.Dropdown( |
|
label=i18n("GPT模型列表"), |
|
choices=sorted(GPT_names, key=custom_sort_key), |
|
value=gpt_path, |
|
interactive=True, |
|
) |
|
SoVITS_dropdown = gr.Dropdown( |
|
label=i18n("SoVITS模型列表"), |
|
choices=sorted(SoVITS_names, key=custom_sort_key), |
|
value=sovits_path, |
|
interactive=True, |
|
) |
|
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary") |
|
refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown]) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown(value=i18n("*请上传并填写参考信息")) |
|
with gr.Row(): |
|
inp_ref = gr.Audio(label=i18n("主参考音频(请上传3~10秒内参考音频,超过会报错!)"), type="filepath") |
|
inp_refs = gr.File( |
|
label=i18n("辅参考音频(可选多个,或不选)"), |
|
file_count="multiple", |
|
visible=True if model_version != "v3" else False, |
|
) |
|
prompt_text = gr.Textbox(label=i18n("主参考音频的文本"), value="", lines=2) |
|
with gr.Row(): |
|
prompt_language = gr.Dropdown( |
|
label=i18n("主参考音频的语种"), choices=list(dict_language.keys()), value=i18n("中文") |
|
) |
|
with gr.Column(): |
|
ref_text_free = gr.Checkbox( |
|
label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"), |
|
value=False, |
|
interactive=True if model_version != "v3" else False, |
|
show_label=True, |
|
) |
|
gr.Markdown( |
|
i18n("使用无参考文本模式时建议使用微调的GPT") |
|
+ "<br>" |
|
+ i18n("听不清参考音频说的啥(不晓得写啥)可以开。开启后无视填写的参考文本。") |
|
) |
|
|
|
with gr.Column(): |
|
gr.Markdown(value=i18n("*请填写需要合成的目标文本和语种模式")) |
|
text = gr.Textbox(label=i18n("需要合成的文本"), value="", lines=20, max_lines=20) |
|
text_language = gr.Dropdown( |
|
label=i18n("需要合成的文本的语种"), choices=list(dict_language.keys()), value=i18n("中文") |
|
) |
|
|
|
with gr.Group(): |
|
gr.Markdown(value=i18n("推理设置")) |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
batch_size = gr.Slider( |
|
minimum=1, maximum=200, step=1, label=i18n("batch_size"), value=20, interactive=True |
|
) |
|
sample_steps = gr.Radio( |
|
label=i18n("采样步数(仅对V3/4生效)"), value=32, choices=[4, 8, 16, 32, 64, 128], visible=True |
|
) |
|
with gr.Row(): |
|
fragment_interval = gr.Slider( |
|
minimum=0.01, maximum=1, step=0.01, label=i18n("分段间隔(秒)"), value=0.3, interactive=True |
|
) |
|
speed_factor = gr.Slider( |
|
minimum=0.6, maximum=1.65, step=0.05, label="语速", value=1.0, interactive=True |
|
) |
|
with gr.Row(): |
|
top_k = gr.Slider(minimum=1, maximum=100, step=1, label=i18n("top_k"), value=5, interactive=True) |
|
top_p = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n("top_p"), value=1, interactive=True) |
|
with gr.Row(): |
|
temperature = gr.Slider( |
|
minimum=0, maximum=1, step=0.05, label=i18n("temperature"), value=1, interactive=True |
|
) |
|
repetition_penalty = gr.Slider( |
|
minimum=0, maximum=2, step=0.05, label=i18n("重复惩罚"), value=1.35, interactive=True |
|
) |
|
|
|
with gr.Column(): |
|
with gr.Row(): |
|
how_to_cut = gr.Dropdown( |
|
label=i18n("怎么切"), |
|
choices=[ |
|
i18n("不切"), |
|
i18n("凑四句一切"), |
|
i18n("凑50字一切"), |
|
i18n("按中文句号。切"), |
|
i18n("按英文句号.切"), |
|
i18n("按标点符号切"), |
|
], |
|
value=i18n("凑四句一切"), |
|
interactive=True, |
|
scale=1, |
|
) |
|
super_sampling = gr.Checkbox( |
|
label=i18n("音频超采样(仅对V3生效))"), value=False, interactive=True, show_label=True |
|
) |
|
|
|
with gr.Row(): |
|
parallel_infer = gr.Checkbox(label=i18n("并行推理"), value=True, interactive=True, show_label=True) |
|
split_bucket = gr.Checkbox( |
|
label=i18n("数据分桶(并行推理时会降低一点计算量)"), |
|
value=True, |
|
interactive=True, |
|
show_label=True, |
|
) |
|
|
|
with gr.Row(): |
|
seed = gr.Number(label=i18n("随机种子"), value=-1) |
|
keep_random = gr.Checkbox(label=i18n("保持随机"), value=True, interactive=True, show_label=True) |
|
|
|
output = gr.Audio(label=i18n("输出的语音")) |
|
with gr.Row(): |
|
inference_button = gr.Button(i18n("合成语音"), variant="primary") |
|
stop_infer = gr.Button(i18n("终止合成"), variant="primary") |
|
|
|
inference_button.click( |
|
inference, |
|
[ |
|
text, |
|
text_language, |
|
inp_ref, |
|
inp_refs, |
|
prompt_text, |
|
prompt_language, |
|
top_k, |
|
top_p, |
|
temperature, |
|
how_to_cut, |
|
batch_size, |
|
speed_factor, |
|
ref_text_free, |
|
split_bucket, |
|
fragment_interval, |
|
seed, |
|
keep_random, |
|
parallel_infer, |
|
repetition_penalty, |
|
sample_steps, |
|
super_sampling, |
|
], |
|
[output, seed], |
|
) |
|
stop_infer.click(tts_pipeline.stop, [], []) |
|
SoVITS_dropdown.change( |
|
change_sovits_weights, |
|
[SoVITS_dropdown, prompt_language, text_language], |
|
[ |
|
prompt_language, |
|
text_language, |
|
prompt_text, |
|
prompt_language, |
|
text, |
|
text_language, |
|
sample_steps, |
|
inp_refs, |
|
ref_text_free, |
|
inference_button, |
|
], |
|
) |
|
GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], []) |
|
|
|
with gr.Group(): |
|
gr.Markdown( |
|
value=i18n( |
|
"文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。" |
|
) |
|
) |
|
with gr.Row(): |
|
text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="", lines=4) |
|
with gr.Column(): |
|
_how_to_cut = gr.Radio( |
|
label=i18n("怎么切"), |
|
choices=[ |
|
i18n("不切"), |
|
i18n("凑四句一切"), |
|
i18n("凑50字一切"), |
|
i18n("按中文句号。切"), |
|
i18n("按英文句号.切"), |
|
i18n("按标点符号切"), |
|
], |
|
value=i18n("凑四句一切"), |
|
interactive=True, |
|
) |
|
cut_text = gr.Button(i18n("切分"), variant="primary") |
|
|
|
def to_cut(text_inp, how_to_cut): |
|
if len(text_inp.strip()) == 0 or text_inp == []: |
|
return "" |
|
method = get_method(cut_method[how_to_cut]) |
|
return method(text_inp) |
|
|
|
text_opt = gr.Textbox(label=i18n("切分后文本"), value="", lines=4) |
|
cut_text.click(to_cut, [text_inp, _how_to_cut], [text_opt]) |
|
gr.Markdown(value=i18n("后续将支持转音素、手工修改音素、语音合成分步执行。")) |
|
|
|
if __name__ == "__main__": |
|
app.queue().launch( |
|
server_name="0.0.0.0", |
|
inbrowser=True, |
|
share=is_share, |
|
server_port=infer_ttswebui, |
|
|
|
) |
|
|