Spaces:
Paused
Linux
These instructions are for Ubuntu x86_64 (other linux would be similar with different command instead of apt-get).
Install:
First one needs a Python 3.10 environment. We recommend using Miniconda.
Download MiniConda for Linux. After downloading, run:
bash ./Miniconda3-py310_23.1.0-1-Linux-x86_64.sh # follow license agreement and add to bash if required
Enter new shell and should also see
(base)
in prompt. Then, create new env:conda create -n h2ogpt -y conda activate h2ogpt conda install python=3.10 -c conda-forge -y
You should see
(h2ogpt)
in shell prompt.Alternatively, on newer Ubuntu systems you can get Python 3.10 environment setup by doing:
sudo apt-get install -y build-essential gcc python3.10-dev virtualenv -p python3 h2ogpt source h2ogpt/bin/activate
Test your python:
python --version
should say 3.10.xx and:
python -c "import os, sys ; print('hello world')"
should print
hello world
. Then clone:git clone https://github.com/h2oai/h2ogpt.git cd h2ogpt
On some systems,
pip
still refers back to the system one, then one can usepython -m pip
orpip3
instead ofpip
or trypython3
instead ofpython
.For GPU: Install CUDA ToolKit with ability to compile using nvcc for some packages like llama-cpp-python, AutoGPTQ, exllama, and flash attention:
conda install cudatoolkit-dev -c conda-forge -y export CUDA_HOME=$CONDA_PREFIX
which gives CUDA 11.7, or if you prefer follow CUDA Toolkit, then do:
export CUDA_HOME=/usr/local/cuda-11.7
If you do not plan to use one of those packages, you can just use the non-dev version:
conda install cudatoolkit=11.7 -c conda-forge -y export CUDA_HOME=$CONDA_PREFIX
Install dependencies:
# fix any bad env pip uninstall -y pandoc pypandoc pypandoc-binary # broad support, but no training-time or data creation dependencies # CPU only: pip install -r requirements.txt --extra-index https://download.pytorch.org/whl/cpu # GPU only: pip install -r requirements.txt --extra-index https://download.pytorch.org/whl/cu117
Install document question-answer dependencies:
# May be required for jq package: sudo apt-get -y install autoconf libtool # Required for Doc Q/A: LangChain: pip install -r reqs_optional/requirements_optional_langchain.txt # Required for CPU: LLaMa/GPT4All: pip install -r reqs_optional/requirements_optional_gpt4all.txt # Optional: PyMuPDF/ArXiv: pip install -r reqs_optional/requirements_optional_langchain.gpllike.txt # Optional: Selenium/PlayWright: pip install -r reqs_optional/requirements_optional_langchain.urls.txt # Optional: support docx, pptx, ArXiv, etc. required by some python packages sudo apt-get install -y libmagic-dev poppler-utils tesseract-ocr libtesseract-dev libreoffice # Improved OCR with DocTR: conda install -y -c conda-forge pygobject pip install -r reqs_optional/requirements_optional_doctr.txt # go back to older onnx so Tesseract OCR still works pip install onnxruntime==1.15.0 onnxruntime-gpu==1.15.0 # Optional: for supporting unstructured package python -m nltk.downloader all # Optional but required for PlayWright playwright install --with-deps
GPU Optional: For AutoGPTQ support on x86_64 linux
pip uninstall -y auto-gptq ; pip install https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.4.2/auto_gptq-0.4.2+cu118-cp310-cp310-linux_x86_64.whl # in-transformers support of AutoGPTQ pip install git+https://github.com/huggingface/optimum.git
This avoids issues with missing cuda extensions etc. if this does not apply to your system, run:
pip uninstall -y auto-gptq ; GITHUB_ACTIONS=true pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ --no-cache-dir
If one sees
CUDA extension not installed
in output after loading model, one needs to compile AutoGPTQ, else will use double memory and be slower on GPU. See AutoGPTQ about running AutoGPT models.GPU Optional: For exllama support on x86_64 linux
pip uninstall -y exllama ; pip install https://github.com/jllllll/exllama/releases/download/0.0.13/exllama-0.0.13+cu118-cp310-cp310-linux_x86_64.whl --no-cache-dir
See exllama about running exllama models.
GPU Optional: Support LLaMa.cpp with CUDA:
- Download/Install CUDA llama-cpp-python wheel, E.g.:
pip uninstall -y llama-cpp-python llama-cpp-python-cuda # GGMLv3 ONLY: pip install https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.1.73+cu117-cp310-cp310-linux_x86_64.whl # GGUF ONLY: pip install https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.1.83+cu117-cp310-cp310-linux_x86_64.whl
- If any issues, then must compile llama-cpp-python with CUDA support:
pip uninstall -y llama-cpp-python llama-cpp-python-cuda export LLAMA_CUBLAS=1 export CMAKE_ARGS=-DLLAMA_CUBLAS=on export FORCE_CMAKE=1 CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python==0.1.73 --no-cache-dir --verbose
- By default, we set
n_gpu_layers
to large value, so llama.cpp offloads all layers for maximum GPU performance. You can control this by passing--llamacpp_dict="{'n_gpu_layers':20}"
for value 20, or setting in UI. For highest performance, offload all layers. That is, one gets maximum performance if one sees in startup of h2oGPT all layers offloaded:llama_model_load_internal: offloaded 35/35 layers to GPU
but this requires sufficient GPU memory. Reduce if you have low memory GPU, say 15.
- Pass to
generate.py
the option--max_seq_len=2048
or some other number if you want model have controlled smaller context, else default (relatively large) value is used that will be slower on CPU. - For LLaMa2, can set
max_tokens
to a larger value for longer output. - If one sees
/usr/bin/nvcc
mentioned in errors, that file needs to be removed as would likely conflict with version installed for conda. - Note that once
llama-cpp-python
is compiled to support CUDA, it no longer works for CPU mode, so one would have to reinstall it without the above options to recovers CPU mode or have a separate h2oGPT env for CPU mode.
- Download/Install CUDA llama-cpp-python wheel, E.g.:
Control Core Count for chroma < 0.4 using chromamigdb package:
- Duckdb used by Chroma < 0.4 uses DuckDB 0.8.1 that has no control over number of threads per database,
import duckdb
leads to all virtual cores as threads and each db consumes another number of threads equal to virtual cores. To prevent this, one can rebuild duckdb using this modification or one can try to use the prebuild wheel for x86_64 built on Ubuntu 20.pip install https://h2o-release.s3.amazonaws.com/h2ogpt/duckdb-0.8.2.dev4025%2Bg9698e9e6a8.d20230907-cp310-cp310-linux_x86_64.whl --no-cache-dir --force-reinstall --no-deps
- Duckdb used by Chroma < 0.4 uses DuckDB 0.8.1 that has no control over number of threads per database,
Compile Install Issues
/usr/local/cuda/include/crt/host_config.h:132:2: error: #error -- unsupported GNU version! gcc versions later than 11 are not supported!
- gcc > 11 is not currently supported by nvcc. Install GCC with a maximum version:
MAX_GCC_VERSION=11 sudo apt install gcc-$MAX_GCC_VERSION g++-$MAX_GCC_VERSION sudo update-alternatives --config gcc # pick version 11 sudo update-alternatives --config g++ # pick version 11
Run
Check that can see CUDA from Torch:
import torch print(torch.cuda.is_available())
should print True.
Place all documents in
user_path
or upload in UI (Help with UI).UI using GPU with at least 24GB with streaming:
python generate.py --base_model=h2oai/h2ogpt-4096-llama2-13b-chat --load_8bit=True --score_model=None --langchain_mode='UserData' --user_path=user_path
Same with a smaller model without quantization:
python generate.py --base_model=h2oai/h2ogpt-4096-llama2-7b-chat --score_model=None --langchain_mode='UserData' --user_path=user_path
UI using LLaMa.cpp LLaMa2 model:
python generate.py --base_model='llama' --prompt_type=llama2 --score_model=None --langchain_mode='UserData' --user_path=user_path --model_path_llama=https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML/resolve/main/llama-2-7b-chat.ggmlv3.q8_0.bin --max_seq_len=4096
which works on CPU or GPU (assuming llama cpp python package compiled against CUDA or Metal).
If using OpenAI for the LLM is ok, but you want documents to be parsed and embedded locally, then do:
OPENAI_API_KEY=<key> python generate.py --inference_server=openai_chat --base_model=gpt-3.5-turbo --score_model=None
where
<key>
should be replaced by your OpenAI key that probably starts withsk-
. OpenAI is not recommended for private document question-answer, but it can be a good reference for testing purposes or when privacy is not required.
Perhaps you want better image caption performance and focus local GPU on that, then do:OPENAI_API_KEY=<key> python generate.py --inference_server=openai_chat --base_model=gpt-3.5-turbo --score_model=None --captions_model=Salesforce/blip2-flan-t5-xl
For Azure OpenAI:
OPENAI_API_KEY=<key> python generate.py --inference_server="openai_azure_chat:<deployment_name>:<base_url>:<api_version>" --base_model=gpt-3.5-turbo --h2ocolors=False --langchain_mode=UserData
where the entry
<deployment_name>
is required for Azure, others are optional and can be filled with stringNone
or have empty input between:
. Azure OpenAI is a bit safer for private access to Azure-based docs.Add
--share=True
to make gradio server visible via sharable URL.If you see an error about protobuf, try:
pip install protobuf==3.20.0
See CPU and GPU for some other general aspects about using h2oGPT on CPU or GPU, such as which models to try.
Google Colab
A Google Colab version of a 3B GPU model is at:
A local copy of that GPU Google Colab is h2oGPT_GPU.ipynb.
A Google Colab version of a 7B LLaMa CPU model is at:
A local copy of that CPU Google Colab is h2oGPT_CPU.ipynb.