Spaces:
Sleeping
Sleeping
import gradio as gr | |
import spaces | |
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification | |
from typing import List, Dict, Any | |
import torch | |
# Define the model and tokenizer | |
model_name = "kazalbrur/BanglaLegalNER" # Ensure this model is suitable or update accordingly | |
tokenizer_name = "csebuetnlp/banglat5_banglaparaphrase" | |
# Load the tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=False) | |
model = AutoModelForTokenClassification.from_pretrained(model_name) | |
def merge_tokens(tokens: List[Dict[str, Any]]) -> List[Dict[str, Any]]: | |
merged_tokens = [] | |
for token in tokens: | |
if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]): | |
last_token = merged_tokens[-1] | |
last_token['word'] += token['word'].replace('##', '') | |
last_token['end'] = token['end'] | |
last_token['score'] = (last_token['score'] + token['score']) / 2 | |
else: | |
merged_tokens.append(token) | |
return merged_tokens | |
# Determine device | |
device = 0 if torch.cuda.is_available() else -1 | |
# Initialize Pipeline with the new model and tokenizer | |
get_completion = pipeline("ner", model=model, tokenizer=tokenizer, device=device) | |
def ner(input: str) -> Dict[str, Any]: | |
try: | |
output = get_completion(input) | |
merged_tokens = merge_tokens(output) | |
return {"text": input, "entities": merged_tokens} | |
except Exception as e: | |
return {"text": input, "entities": [], "error": str(e)} | |
####### GRADIO APP ####### | |
title = """<h1 id="title"> Bangla Legal Entity Recognition </h1>""" | |
description = """ | |
- The model used for Recognizing entities [Bangla Legal NER](https://huggingface.co/kazalbrur/BanglaLegalNER). | |
""" | |
css = ''' | |
h1#title { | |
text-align: center; | |
} | |
''' | |
theme = gr.themes.Soft() | |
demo = gr.Blocks(css=css, theme=theme) | |
with demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
gr.Interface( | |
fn=ner, | |
inputs=[gr.Textbox(label="Enter Your Text to Find the Legal Entities", lines=20)], | |
outputs=[gr.HighlightedText(label="Text with entities")], | |
allow_flagging="never" | |
) | |
demo.launch() | |