kazalbrur commited on
Commit
1ab345c
1 Parent(s): 6ac85e1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -5
app.py CHANGED
@@ -1,10 +1,18 @@
1
  import gradio as gr
2
  import spaces
3
- from transformers import pipeline
4
  from typing import List, Dict, Any
5
  import torch
6
 
7
- def merge_tokens(tokens: List[Dict[str, any]]) -> List[Dict[str, any]]:
 
 
 
 
 
 
 
 
8
  merged_tokens = []
9
  for token in tokens:
10
  if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]):
@@ -19,8 +27,8 @@ def merge_tokens(tokens: List[Dict[str, any]]) -> List[Dict[str, any]]:
19
  # Determine device
20
  device = 0 if torch.cuda.is_available() else -1
21
 
22
- # Initialize Model
23
- get_completion = pipeline("ner", model="kazalbrur/BanglaLegalNER", device=device)
24
 
25
  @spaces.GPU(duration=120)
26
  def ner(input: str) -> Dict[str, Any]:
@@ -35,7 +43,7 @@ def ner(input: str) -> Dict[str, Any]:
35
  title = """<h1 id="title"> Bangla Legal Entity Recognition </h1>"""
36
 
37
  description = """
38
- - The model used for Recognizing entities [BERT-BASE-NER](https://huggingface.co/kazalbrur/BanglaLegalNER).
39
  """
40
 
41
  css = '''
 
1
  import gradio as gr
2
  import spaces
3
+ from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
4
  from typing import List, Dict, Any
5
  import torch
6
 
7
+ # Define the model and tokenizer
8
+ model_name = "kazalbrur/BanglaLegalNER" # Ensure this model is suitable or update accordingly
9
+ tokenizer_name = "csebuetnlp/banglat5_banglaparaphrase"
10
+
11
+ # Load the tokenizer and model
12
+ tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=False)
13
+ model = AutoModelForTokenClassification.from_pretrained(model_name)
14
+
15
+ def merge_tokens(tokens: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
16
  merged_tokens = []
17
  for token in tokens:
18
  if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]):
 
27
  # Determine device
28
  device = 0 if torch.cuda.is_available() else -1
29
 
30
+ # Initialize Pipeline with the new model and tokenizer
31
+ get_completion = pipeline("ner", model=model, tokenizer=tokenizer, device=device)
32
 
33
  @spaces.GPU(duration=120)
34
  def ner(input: str) -> Dict[str, Any]:
 
43
  title = """<h1 id="title"> Bangla Legal Entity Recognition </h1>"""
44
 
45
  description = """
46
+ - The model used for Recognizing entities [Bangla Legal NER](https://huggingface.co/kazalbrur/BanglaLegalNER).
47
  """
48
 
49
  css = '''