YOLOR / cfg /yolor_p6.cfg
karolmajek's picture
app
1a1ee1f
raw
history blame
18.3 kB
[net]
batch=64
subdivisions=8
width=1280
height=1280
channels=3
momentum=0.949
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.00261
burn_in=1000
max_batches = 500500
policy=steps
steps=400000,450000
scales=.1,.1
mosaic=1
# ============ Backbone ============ #
# Stem
# P1
# Downsample
# 0
[reorg]
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=silu
# P2
# Downsample
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=silu
# Split
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=silu
[route]
layers = -2
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=silu
# Residual Block
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=silu
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=silu
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=silu
[shortcut]
from=-3
activation=linear
# Transition first
#
#[convolutional]
#batch_normalize=1
#filters=64
#size=1
#stride=1
#pad=1
#activation=silu
# Merge [-1, -(3k+3)]
[route]
layers = -1,-12
# Transition last
# 16 (previous+6+3k)
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=silu
# P3
# Downsample
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=silu
# Split
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=silu
[route]
layers = -2
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=silu
# Residual Block
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=silu
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=silu
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=silu
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=silu
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=silu
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=silu
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=silu
[shortcut]
from=-3
activation=linear
# Transition first
#
#[convolutional]
#batch_normalize=1
#filters=128
#size=1
#stride=1
#pad=1
#activation=silu
# Merge [-1, -(3k+3)]
[route]
layers = -1,-24
# Transition last
# 43 (previous+6+3k)
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=silu
# P4
# Downsample
[convolutional]
batch_normalize=1
filters=384
size=3
stride=2
pad=1
activation=silu
# Split
[convolutional]
batch_normalize=1
filters=192
size=1
stride=1
pad=1
activation=silu
[route]
layers = -2
[convolutional]
batch_normalize=1
filters=192
size=1
stride=1
pad=1
activation=silu
# Residual Block
[convolutional]
batch_normalize=1
filters=192
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
filters=192
size=3
stride=1
pad=1
activation=silu
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=192
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
filters=192
size=3
stride=1
pad=1
activation=silu
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=192
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
filters=192
size=3
stride=1
pad=1
activation=silu
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=192
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
filters=192
size=3
stride=1
pad=1
activation=silu
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=192
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
filters=192
size=3
stride=1
pad=1
activation=silu
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=192
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
filters=192
size=3
stride=1
pad=1
activation=silu
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=192
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
filters=192
size=3
stride=1
pad=1
activation=silu
[shortcut]
from=-3
activation=linear
# Transition first
#
#[convolutional]
#batch_normalize=1
#filters=192
#size=1
#stride=1
#pad=1
#activation=silu
# Merge [-1, -(3k+3)]
[route]
layers = -1,-24
# Transition last
# 70 (previous+6+3k)
[convolutional]
batch_normalize=1
filters=384
size=1
stride=1
pad=1
activation=silu
# P5
# Downsample
[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
activation=silu
# Split
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=silu
[route]
layers = -2
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=silu
# Residual Block
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=silu
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=silu
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=silu
[shortcut]
from=-3
activation=linear
# Transition first
#
#[convolutional]
#batch_normalize=1
#filters=256
#size=1
#stride=1
#pad=1
#activation=silu
# Merge [-1, -(3k+3)]
[route]
layers = -1,-12
# Transition last
# 85 (previous+6+3k)
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=silu
# P6
# Downsample
[convolutional]
batch_normalize=1
filters=640
size=3
stride=2
pad=1
activation=silu
# Split
[convolutional]
batch_normalize=1
filters=320
size=1
stride=1
pad=1
activation=silu
[route]
layers = -2
[convolutional]
batch_normalize=1
filters=320
size=1
stride=1
pad=1
activation=silu
# Residual Block
[convolutional]
batch_normalize=1
filters=320
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
filters=320
size=3
stride=1
pad=1
activation=silu
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=320
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
filters=320
size=3
stride=1
pad=1
activation=silu
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=320
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
filters=320
size=3
stride=1
pad=1
activation=silu
[shortcut]
from=-3
activation=linear
# Transition first
#
#[convolutional]
#batch_normalize=1
#filters=320
#size=1
#stride=1
#pad=1
#activation=silu
# Merge [-1, -(3k+3)]
[route]
layers = -1,-12
# Transition last
# 100 (previous+6+3k)
[convolutional]
batch_normalize=1
filters=640
size=1
stride=1
pad=1
activation=silu
# ============ End of Backbone ============ #
# ============ Neck ============ #
# CSPSPP
[convolutional]
batch_normalize=1
filters=320
size=1
stride=1
pad=1
activation=silu
[route]
layers = -2
[convolutional]
batch_normalize=1
filters=320
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=320
activation=silu
[convolutional]
batch_normalize=1
filters=320
size=1
stride=1
pad=1
activation=silu
### SPP ###
[maxpool]
stride=1
size=5
[route]
layers=-2
[maxpool]
stride=1
size=9
[route]
layers=-4
[maxpool]
stride=1
size=13
[route]
layers=-1,-3,-5,-6
### End SPP ###
[convolutional]
batch_normalize=1
filters=320
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=320
activation=silu
[route]
layers = -1, -13
# 115 (previous+6+5+2k)
[convolutional]
batch_normalize=1
filters=320
size=1
stride=1
pad=1
activation=silu
# End of CSPSPP
# FPN-5
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=silu
[upsample]
stride=2
[route]
layers = 85
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=silu
[route]
layers = -1, -3
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=silu
# Split
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=silu
[route]
layers = -2
# Plain Block
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=silu
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=silu
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=silu
# Merge [-1, -(2k+2)]
[route]
layers = -1, -8
# Transition last
# 131 (previous+6+4+2k)
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=silu
# FPN-4
[convolutional]
batch_normalize=1
filters=192
size=1
stride=1
pad=1
activation=silu
[upsample]
stride=2
[route]
layers = 70
[convolutional]
batch_normalize=1
filters=192
size=1
stride=1
pad=1
activation=silu
[route]
layers = -1, -3
[convolutional]
batch_normalize=1
filters=192
size=1
stride=1
pad=1
activation=silu
# Split
[convolutional]
batch_normalize=1
filters=192
size=1
stride=1
pad=1
activation=silu
[route]
layers = -2
# Plain Block
[convolutional]
batch_normalize=1
filters=192
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=192
activation=silu
[convolutional]
batch_normalize=1
filters=192
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=192
activation=silu
[convolutional]
batch_normalize=1
filters=192
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=192
activation=silu
# Merge [-1, -(2k+2)]
[route]
layers = -1, -8
# Transition last
# 147 (previous+6+4+2k)
[convolutional]
batch_normalize=1
filters=192
size=1
stride=1
pad=1
activation=silu
# FPN-3
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=silu
[upsample]
stride=2
[route]
layers = 43
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=silu
[route]
layers = -1, -3
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=silu
# Split
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=silu
[route]
layers = -2
# Plain Block
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=128
activation=silu
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=128
activation=silu
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=128
activation=silu
# Merge [-1, -(2k+2)]
[route]
layers = -1, -8
# Transition last
# 163 (previous+6+4+2k)
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=silu
# PAN-4
[convolutional]
batch_normalize=1
size=3
stride=2
pad=1
filters=192
activation=silu
[route]
layers = -1, 147
[convolutional]
batch_normalize=1
filters=192
size=1
stride=1
pad=1
activation=silu
# Split
[convolutional]
batch_normalize=1
filters=192
size=1
stride=1
pad=1
activation=silu
[route]
layers = -2
# Plain Block
[convolutional]
batch_normalize=1
filters=192
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=192
activation=silu
[convolutional]
batch_normalize=1
filters=192
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=192
activation=silu
[convolutional]
batch_normalize=1
filters=192
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=192
activation=silu
[route]
layers = -1,-8
# Transition last
# 176 (previous+3+4+2k)
[convolutional]
batch_normalize=1
filters=192
size=1
stride=1
pad=1
activation=silu
# PAN-5
[convolutional]
batch_normalize=1
size=3
stride=2
pad=1
filters=256
activation=silu
[route]
layers = -1, 131
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=silu
# Split
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=silu
[route]
layers = -2
# Plain Block
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=silu
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=silu
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=silu
[route]
layers = -1,-8
# Transition last
# 189 (previous+3+4+2k)
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=silu
# PAN-6
[convolutional]
batch_normalize=1
size=3
stride=2
pad=1
filters=320
activation=silu
[route]
layers = -1, 115
[convolutional]
batch_normalize=1
filters=320
size=1
stride=1
pad=1
activation=silu
# Split
[convolutional]
batch_normalize=1
filters=320
size=1
stride=1
pad=1
activation=silu
[route]
layers = -2
# Plain Block
[convolutional]
batch_normalize=1
filters=320
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=320
activation=silu
[convolutional]
batch_normalize=1
filters=320
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=320
activation=silu
[convolutional]
batch_normalize=1
filters=320
size=1
stride=1
pad=1
activation=silu
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=320
activation=silu
[route]
layers = -1,-8
# Transition last
# 202 (previous+3+4+2k)
[convolutional]
batch_normalize=1
filters=320
size=1
stride=1
pad=1
activation=silu
# ============ End of Neck ============ #
# 203
[implicit_add]
filters=256
# 204
[implicit_add]
filters=384
# 205
[implicit_add]
filters=512
# 206
[implicit_add]
filters=640
# 207
[implicit_mul]
filters=255
# 208
[implicit_mul]
filters=255
# 209
[implicit_mul]
filters=255
# 210
[implicit_mul]
filters=255
# ============ Head ============ #
# YOLO-3
[route]
layers = 163
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=silu
[shift_channels]
from=203
[convolutional]
size=1
stride=1
pad=1
filters=255
activation=linear
[control_channels]
from=207
[yolo]
mask = 0,1,2
anchors = 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
classes=80
num=12
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
scale_x_y = 1.05
iou_thresh=0.213
cls_normalizer=1.0
iou_normalizer=0.07
iou_loss=ciou
nms_kind=greedynms
beta_nms=0.6
# YOLO-4
[route]
layers = 176
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=384
activation=silu
[shift_channels]
from=204
[convolutional]
size=1
stride=1
pad=1
filters=255
activation=linear
[control_channels]
from=208
[yolo]
mask = 3,4,5
anchors = 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
classes=80
num=12
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
scale_x_y = 1.05
iou_thresh=0.213
cls_normalizer=1.0
iou_normalizer=0.07
iou_loss=ciou
nms_kind=greedynms
beta_nms=0.6
# YOLO-5
[route]
layers = 189
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=silu
[shift_channels]
from=205
[convolutional]
size=1
stride=1
pad=1
filters=255
activation=linear
[control_channels]
from=209
[yolo]
mask = 6,7,8
anchors = 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
classes=80
num=12
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
scale_x_y = 1.05
iou_thresh=0.213
cls_normalizer=1.0
iou_normalizer=0.07
iou_loss=ciou
nms_kind=greedynms
beta_nms=0.6
# YOLO-6
[route]
layers = 202
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=640
activation=silu
[shift_channels]
from=206
[convolutional]
size=1
stride=1
pad=1
filters=255
activation=linear
[control_channels]
from=210
[yolo]
mask = 9,10,11
anchors = 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
classes=80
num=12
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
scale_x_y = 1.05
iou_thresh=0.213
cls_normalizer=1.0
iou_normalizer=0.07
iou_loss=ciou
nms_kind=greedynms
beta_nms=0.6
# ============ End of Head ============ #