Spaces:
Sleeping
Sleeping
kargaranamir
commited on
Commit
•
b94d9cd
1
Parent(s):
41c3c5a
add image output
Browse files- app.py +43 -42
- app_legacy.py +113 -0
- packages.txt +1 -0
- requirements.txt +2 -1
app.py
CHANGED
@@ -11,13 +11,15 @@
|
|
11 |
|
12 |
import gradio as gr
|
13 |
from io import BytesIO
|
14 |
-
import base64
|
15 |
from fasttext.FastText import _FastText
|
16 |
import re
|
17 |
import lime.lime_text
|
18 |
import numpy as np
|
19 |
-
from
|
20 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
21 |
|
22 |
# Load the FastText language identification model from Hugging Face Hub
|
23 |
model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin")
|
@@ -26,33 +28,19 @@ model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification"
|
|
26 |
classifier = _FastText(model_path)
|
27 |
|
28 |
def remove_label_prefix(item):
|
29 |
-
"""
|
30 |
-
Remove label prefix from an item
|
31 |
-
"""
|
32 |
return item.replace('__label__', '')
|
33 |
|
34 |
def remove_label_prefix_list(input_list):
|
35 |
-
"""
|
36 |
-
Remove label prefix from list or list of list
|
37 |
-
"""
|
38 |
if isinstance(input_list[0], list):
|
39 |
-
# If the first element is a list, it's a list of lists
|
40 |
return [[remove_label_prefix(item) for item in inner_list] for inner_list in input_list]
|
41 |
else:
|
42 |
-
# Otherwise, it's a simple list
|
43 |
return [remove_label_prefix(item) for item in input_list]
|
44 |
|
45 |
-
|
46 |
-
# Get the sorted class names from the classifier
|
47 |
class_names = remove_label_prefix_list(classifier.labels)
|
48 |
class_names = np.sort(class_names)
|
49 |
num_class = len(class_names)
|
50 |
|
51 |
-
|
52 |
def tokenize_string(string):
|
53 |
-
"""
|
54 |
-
Splits the string into words similar to FastText's method.
|
55 |
-
"""
|
56 |
return string.split()
|
57 |
|
58 |
explainer = lime.lime_text.LimeTextExplainer(
|
@@ -62,52 +50,65 @@ explainer = lime.lime_text.LimeTextExplainer(
|
|
62 |
)
|
63 |
|
64 |
def fasttext_prediction_in_sklearn_format(classifier, texts):
|
65 |
-
"""
|
66 |
-
Converts FastText predictions into Scikit-Learn format predictions.
|
67 |
-
"""
|
68 |
res = []
|
69 |
labels, probabilities = classifier.predict(texts, num_class)
|
70 |
-
|
71 |
-
# Remove label prefix
|
72 |
labels = remove_label_prefix_list(labels)
|
73 |
-
|
74 |
for label, probs, text in zip(labels, probabilities, texts):
|
75 |
order = np.argsort(np.array(label))
|
76 |
res.append(probs[order])
|
77 |
-
|
78 |
return np.array(res)
|
79 |
|
80 |
def generate_explanation_html(input_sentence):
|
81 |
-
|
82 |
-
Generates an explanation HTML file using LIME for the input sentence.
|
83 |
-
"""
|
84 |
-
preprocessed_sentence = input_sentence # No need to preprocess anymore
|
85 |
exp = explainer.explain_instance(
|
86 |
preprocessed_sentence,
|
87 |
classifier_fn=lambda x: fasttext_prediction_in_sklearn_format(classifier, x),
|
88 |
top_labels=2,
|
89 |
num_features=20,
|
90 |
)
|
91 |
-
|
92 |
output_html_filename = "explanation.html"
|
93 |
exp.save_to_file(output_html_filename)
|
94 |
-
|
95 |
return output_html_filename
|
96 |
|
97 |
-
def
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
output_explanation = gr.outputs.File(label="Download Explanation HTML")
|
107 |
|
108 |
-
gr.Interface(
|
109 |
-
fn=
|
110 |
inputs=input_sentence,
|
111 |
-
outputs=output_explanation,
|
|
|
|
|
112 |
allow_flagging='never'
|
113 |
-
)
|
|
|
|
|
|
11 |
|
12 |
import gradio as gr
|
13 |
from io import BytesIO
|
|
|
14 |
from fasttext.FastText import _FastText
|
15 |
import re
|
16 |
import lime.lime_text
|
17 |
import numpy as np
|
18 |
+
from PIL import Image
|
19 |
from huggingface_hub import hf_hub_download
|
20 |
+
from selenium import webdriver
|
21 |
+
from selenium.common.exceptions import WebDriverException
|
22 |
+
import os
|
23 |
|
24 |
# Load the FastText language identification model from Hugging Face Hub
|
25 |
model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin")
|
|
|
28 |
classifier = _FastText(model_path)
|
29 |
|
30 |
def remove_label_prefix(item):
|
|
|
|
|
|
|
31 |
return item.replace('__label__', '')
|
32 |
|
33 |
def remove_label_prefix_list(input_list):
|
|
|
|
|
|
|
34 |
if isinstance(input_list[0], list):
|
|
|
35 |
return [[remove_label_prefix(item) for item in inner_list] for inner_list in input_list]
|
36 |
else:
|
|
|
37 |
return [remove_label_prefix(item) for item in input_list]
|
38 |
|
|
|
|
|
39 |
class_names = remove_label_prefix_list(classifier.labels)
|
40 |
class_names = np.sort(class_names)
|
41 |
num_class = len(class_names)
|
42 |
|
|
|
43 |
def tokenize_string(string):
|
|
|
|
|
|
|
44 |
return string.split()
|
45 |
|
46 |
explainer = lime.lime_text.LimeTextExplainer(
|
|
|
50 |
)
|
51 |
|
52 |
def fasttext_prediction_in_sklearn_format(classifier, texts):
|
|
|
|
|
|
|
53 |
res = []
|
54 |
labels, probabilities = classifier.predict(texts, num_class)
|
|
|
|
|
55 |
labels = remove_label_prefix_list(labels)
|
|
|
56 |
for label, probs, text in zip(labels, probabilities, texts):
|
57 |
order = np.argsort(np.array(label))
|
58 |
res.append(probs[order])
|
|
|
59 |
return np.array(res)
|
60 |
|
61 |
def generate_explanation_html(input_sentence):
|
62 |
+
preprocessed_sentence = input_sentence
|
|
|
|
|
|
|
63 |
exp = explainer.explain_instance(
|
64 |
preprocessed_sentence,
|
65 |
classifier_fn=lambda x: fasttext_prediction_in_sklearn_format(classifier, x),
|
66 |
top_labels=2,
|
67 |
num_features=20,
|
68 |
)
|
|
|
69 |
output_html_filename = "explanation.html"
|
70 |
exp.save_to_file(output_html_filename)
|
|
|
71 |
return output_html_filename
|
72 |
|
73 |
+
def take_screenshot(local_html_path):
|
74 |
+
options = webdriver.ChromeOptions()
|
75 |
+
options.add_argument('--headless')
|
76 |
+
options.add_argument('--no-sandbox')
|
77 |
+
options.add_argument('--disable-dev-shm-usage')
|
78 |
+
|
79 |
+
try:
|
80 |
+
local_html_path = os.path.abspath(local_html_path)
|
81 |
+
wd = webdriver.Chrome(options=options)
|
82 |
+
wd.set_window_size(1366, 728)
|
83 |
+
wd.get('file://' + local_html_path)
|
84 |
+
wd.implicitly_wait(10)
|
85 |
+
screenshot = wd.get_screenshot_as_png()
|
86 |
+
except WebDriverException as e:
|
87 |
+
return Image.new('RGB', (1, 1))
|
88 |
+
finally:
|
89 |
+
if wd:
|
90 |
+
wd.quit()
|
91 |
+
|
92 |
+
return Image.open(BytesIO(screenshot))
|
93 |
+
|
94 |
+
def merge(input_sentence):
|
95 |
+
input_sentence = input_sentence.replace('\n', ' ')
|
96 |
+
output_html_filename = generate_explanation_html(input_sentence)
|
97 |
+
im = take_screenshot(output_html_filename)
|
98 |
+
|
99 |
+
return im, output_html_filename
|
100 |
+
|
101 |
+
input_sentence = gr.inputs.Textbox(label="Input Sentence")
|
102 |
|
103 |
+
output_explanation = gr.outputs.File(label="Explanation HTML")
|
|
|
104 |
|
105 |
+
iface = gr.Interface(
|
106 |
+
fn=merge,
|
107 |
inputs=input_sentence,
|
108 |
+
outputs=[gr.Image(type="pil", height=364, width=683, label = "Explanation Image"), output_explanation],
|
109 |
+
title="LIME LID",
|
110 |
+
description="This code applies LIME (Local Interpretable Model-Agnostic Explanations) on fasttext language identification.",
|
111 |
allow_flagging='never'
|
112 |
+
)
|
113 |
+
|
114 |
+
iface.launch()
|
app_legacy.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# """
|
2 |
+
# Author: Amir Hossein Kargaran
|
3 |
+
# Date: August, 2023
|
4 |
+
|
5 |
+
# Description: This code applies LIME (Local Interpretable Model-Agnostic Explanations) on fasttext language identification.
|
6 |
+
|
7 |
+
# MIT License
|
8 |
+
|
9 |
+
# Some part of the code is adopted from here: https://gist.github.com/ageitgey/60a8b556a9047a4ca91d6034376e5980
|
10 |
+
# """
|
11 |
+
|
12 |
+
import gradio as gr
|
13 |
+
from io import BytesIO
|
14 |
+
import base64
|
15 |
+
from fasttext.FastText import _FastText
|
16 |
+
import re
|
17 |
+
import lime.lime_text
|
18 |
+
import numpy as np
|
19 |
+
from pathlib import Path
|
20 |
+
from huggingface_hub import hf_hub_download
|
21 |
+
|
22 |
+
# Load the FastText language identification model from Hugging Face Hub
|
23 |
+
model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin")
|
24 |
+
|
25 |
+
# Create the FastText classifier
|
26 |
+
classifier = _FastText(model_path)
|
27 |
+
|
28 |
+
def remove_label_prefix(item):
|
29 |
+
"""
|
30 |
+
Remove label prefix from an item
|
31 |
+
"""
|
32 |
+
return item.replace('__label__', '')
|
33 |
+
|
34 |
+
def remove_label_prefix_list(input_list):
|
35 |
+
"""
|
36 |
+
Remove label prefix from list or list of list
|
37 |
+
"""
|
38 |
+
if isinstance(input_list[0], list):
|
39 |
+
# If the first element is a list, it's a list of lists
|
40 |
+
return [[remove_label_prefix(item) for item in inner_list] for inner_list in input_list]
|
41 |
+
else:
|
42 |
+
# Otherwise, it's a simple list
|
43 |
+
return [remove_label_prefix(item) for item in input_list]
|
44 |
+
|
45 |
+
|
46 |
+
# Get the sorted class names from the classifier
|
47 |
+
class_names = remove_label_prefix_list(classifier.labels)
|
48 |
+
class_names = np.sort(class_names)
|
49 |
+
num_class = len(class_names)
|
50 |
+
|
51 |
+
|
52 |
+
def tokenize_string(string):
|
53 |
+
"""
|
54 |
+
Splits the string into words similar to FastText's method.
|
55 |
+
"""
|
56 |
+
return string.split()
|
57 |
+
|
58 |
+
explainer = lime.lime_text.LimeTextExplainer(
|
59 |
+
split_expression=tokenize_string,
|
60 |
+
bow=False,
|
61 |
+
class_names=class_names
|
62 |
+
)
|
63 |
+
|
64 |
+
def fasttext_prediction_in_sklearn_format(classifier, texts):
|
65 |
+
"""
|
66 |
+
Converts FastText predictions into Scikit-Learn format predictions.
|
67 |
+
"""
|
68 |
+
res = []
|
69 |
+
labels, probabilities = classifier.predict(texts, num_class)
|
70 |
+
|
71 |
+
# Remove label prefix
|
72 |
+
labels = remove_label_prefix_list(labels)
|
73 |
+
|
74 |
+
for label, probs, text in zip(labels, probabilities, texts):
|
75 |
+
order = np.argsort(np.array(label))
|
76 |
+
res.append(probs[order])
|
77 |
+
|
78 |
+
return np.array(res)
|
79 |
+
|
80 |
+
def generate_explanation_html(input_sentence):
|
81 |
+
"""
|
82 |
+
Generates an explanation HTML file using LIME for the input sentence.
|
83 |
+
"""
|
84 |
+
preprocessed_sentence = input_sentence # No need to preprocess anymore
|
85 |
+
exp = explainer.explain_instance(
|
86 |
+
preprocessed_sentence,
|
87 |
+
classifier_fn=lambda x: fasttext_prediction_in_sklearn_format(classifier, x),
|
88 |
+
top_labels=2,
|
89 |
+
num_features=20,
|
90 |
+
)
|
91 |
+
|
92 |
+
output_html_filename = "explanation.html"
|
93 |
+
exp.save_to_file(output_html_filename)
|
94 |
+
|
95 |
+
return output_html_filename
|
96 |
+
|
97 |
+
def download_html_file(html_filename):
|
98 |
+
"""
|
99 |
+
Downloads the content of the given HTML file.
|
100 |
+
"""
|
101 |
+
with open(html_filename, "rb") as file:
|
102 |
+
html_content = file.read()
|
103 |
+
return html_content
|
104 |
+
|
105 |
+
input_sentence = gr.inputs.Textbox(label="Input Sentence") # Change the label if needed
|
106 |
+
output_explanation = gr.outputs.File(label="Download Explanation HTML")
|
107 |
+
|
108 |
+
gr.Interface(
|
109 |
+
fn=generate_explanation_html,
|
110 |
+
inputs=input_sentence,
|
111 |
+
outputs=output_explanation,
|
112 |
+
allow_flagging='never'
|
113 |
+
).launch()
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
chromium-chromedriver
|
requirements.txt
CHANGED
@@ -2,4 +2,5 @@ fasttext>=0.9.2
|
|
2 |
lime>=0.2.0,<0.3.0
|
3 |
huggingface-hub>=0.14.1
|
4 |
numpy>=1.24.3
|
5 |
-
gradio>=3.40.1
|
|
|
|
2 |
lime>=0.2.0,<0.3.0
|
3 |
huggingface-hub>=0.14.1
|
4 |
numpy>=1.24.3
|
5 |
+
gradio>=3.40.1
|
6 |
+
selenium >=4.0.0, < 5.0.0
|